
A modularization mechanism for
interactive proof development

Eugenio G. Omodeo
Università di L’Aquila

Dipartimento di Informatica

Jacob T. Schwartz
New York University

Courant Inst. of Mathematical Sciences

Atlanta,
March 9, 2002,
AMS meeting

Program derivation with verified
transformations – I

[· · ·] a transformational programming method-
ology that includes a fully operational set-the-
oretic proof checker [· · ·]

[· · ·] examples of two moderately difficult pro-
gram derivations. One of these derives a high
level form of an algorithm to compute the bisim-
ulation equivalence relation [· · ·] the other de-
rives an algorithm to minimize the number of
states in a deterministic finite state automa-
ton.
[· · ·]Based on our experience with these deriva-
tions, we believe that mechanical verification
of program transformations is the most impor-
tant missing ingredient to the successful use of
transformational programming as part of a vi-
able program development technology.

J.-P. Keller, R. Paige, 1995

Program derivation with verified
transformations – II

But approximately 7,000 lines of NAP text
were used [· · ·] to work out the whole proof.
We believe that this amount of “proofware”
represents about ten times the size of a legi-
ble mathematical proof. We would hope that
a high level language approach to proof con-
struction and reuse would help.

J.-P. Keller, R. Paige, 1995

WHAT ARCHITECTURE
FOR PROOFWARE ?

•How can we ‘tame’ the problems which arise
from large scale ?

• Is the distinction between calculus and theory
adequate ?

•Any answer must ensue from an extensive ex-
perimentation plan (and activity)

• It is convenient to move from established re-
search on the foundations of mathematics and
analysis

• (Hyper-)textual scenarios are more persistent
than fully interactive sessions

EXPERIMENTATION

Two current activities: NYU , MIUR 40%

• one follows the royal road of mathematics paved
by the work of Cauchy, Dedekind, Frege,
Cantor, Peano, Whitehead-Russell,
Zermelo-Fraenkel-von Neumann, etc.

• the other aims at assessing the current state
of ‘proof technology’, insisting particularly on
the equational calculus of dyadic relations

Common denominator:

Emphasis on set theory

Design of
definitional extension mechanisms

ROLE OF SET THEORY

Research on foundations

• Brought into evidence the usability of set the-
ory as a lingua franca for the whole of maths

• Led to an extremely valuable development of
abstract schemes of reasoning

•Did not impress a technological push propor-
tionate to the research achievements

2 examples:

Ord(X) =: X ⊆ P(X) & (∀ y, z ∈ X)
(y ∈ z ∨ y = z ∨ z ∈ y)

R =:
{
c ⊆ Q | (∀ y ∈ c)(∃ z ∈ c)(y < z)

& (∀ y ∈ c)(∀ z ∈ Q)(z < y → z ∈ c)
}

\{∅, Q}
• Part of the appeal of set theory stems from the

existence of a variant of it which deals with
finite sets only (Alfred Tarski, 1924)

• It well bridges problem specification languages
with program specification languages (where
set-handling capabilities are the ‘bread-and-
butter’)

Ingredients of Set Theory

•Boolean operations (save absolute comple-
mentation) ∅,∩,∪, \, 4

• extensional ∈ (two sets cannot have the same
el’ts)

X = Y ↔ ∀ v (v ∈ X ↔ v ∈ Y)

• nesting (which makes even individuals super-
fluous) X with Y , {X1, . . . , Xn }

• Possibility to form sets complying with inten-
sional specifications⋃

Y =: {x2 : x1 ∈ Y, x2 ∈ x1}
P(Y) =: {x : x ⊆ Y }
ownP(Y) =: {x : x ⊆ Y | x ∈ Y }

•Well-foundedness and choice:
arb X ∈ X with X & X ∩ arb X = ∅

•Recursion based on ∈
Ult mm(S) =: S∪

⋃ {
Ult mm(x) :x ∈ S

}
• Existence of infinite sets

s∞ 6= ∅ & (∀x ∈ s∞)({x} ∈ s∞)

A citation on ‘proof-hiding’ – I

Wir haben oft ein Zeichen nötig, mit
dem wir einen sehr zusammengesetzten
Sinn verbinden. Dieses Zeichen dient uns
sozusagen als Gefäß, in dem wir diesen
Sinn mit uns führen können, immer in
dem Bewußtsein, daß wir dieses Gefäß
öffnen können, wenn wir seines Inhalts
bedürfen. Gottlob Frege

We often need to associate some highly com-
pound meaning with a symbol. Such a sym-
bol serves us as a kind of container in which
we can carry this meaning, always with the
understanding that it can be opened if we
need its content.

An example of ‘proof-hiding’ – II

The reader who remembers these key points
will do well in what follows. In particu-
lar, it is now quite all right to entirely
forget how the nonstandard universe was
defined and to banish ultrafilters from our
consciousness.

Martin Davis, Applied Nonstandard Analysis, 1977

‘THEORY’ EXAMPLE: ordered pair

THEORY orderedPair()
==> (cons, car, cdr, nl, len)

car
(
cons(X, Y)

)
= X

cdr
(
cons(X, Y)

)
= Y

cons(X, Y) = cons(U, V)
→ X = U & Y = V

nl 6= cons(X, Y)
len(nl) = 0
len(cons(X, Y)) = next(len(Y))

END orderedPair

‘Within’ orderedPair we would perhaps see

cons(X, Y) =:
{
{X},

{
{X}, {Y, {Y }}

}}
car(P) =: arb arb P
cdr(P) =: car

(
arb (P \ {arb P})

\ {arb P}
)

nl =: ∅
...
len(T) =: arb

{
next(len(r))
: r ∈ y ∈ x ∈ T
| (∃l)(T = [l, r])

}
intermixed with various proof details

ordered pair example continued

Theories will form a hierarchy :
‘from above’ orderedPair, we would see

0 =: ∅
next(X) =: X ∪ {X }

...

(or something equivalent) before the ‘invocation’

APPLY ([− , −], hd , tl , [], ln)
orderedPair

Defining len(−) inside orderedPair is certainly eas-
ier than outside it

CONSERVATIVE EXTENSIONS

OF A LOGICAL FORMALISM

So far, ‘THEORY’ supplies us an extension mech-
anism more flexible, but of the same nature, as

• definitions such as P∩Q =: P ∪Q for Rob-
bins’ algebra

•mechanisms such as Skolemization, which en-
ables one to replace e.g. an axiom

∃u (∀x x · u = x & ∀ y ∃ v y · v = u)

by the more legible

X · 1 = X

Y · Y −1 = 1

. However, brevity, legibility, conservativ-
ity, are not enough

IMPORTANCE OF DEF. MECHANISMS

Definitions serve various purposes. At their
simplest they are merely abbreviations which
concentrate attention on interesting constructs
by assigning them names which shorten their
syntactic form. (But of course the compound-
ing of such abbreviations can change the ap-
pearance of a discourse completely, transform-
ing what would otherwise be a exponentially
lengthening welter of bewildering formulae into
a sequence of sentences which carry helpful
intuitions). Beyond this, definitions serve to
‘instantiate’, that is, to introduce the objects
whose special properties are crucial to an in-
tended argument. Like the selection of crucial
lines, points, and circles from the infinity of
geometric elements that might be considered
in a Euclidean argument, definitions of this
kind often carry a proof’s most vital ideas.

Jacob T. Schwartz

REUSE OF ‘GOOD TRICKS’ – I
(constructions, proofs)

THEORY equiv classes (s, Eq)
X ∈ s → Eq(X, X)
X,Y, Z ∈ s & Eq(X, Y)

→
(
Eq(Y, Z) ↔ Eq(Z,X)

)
==> (quot, cl of)

X, Y ∈ s →
(
Eq(X, Y) ↔ Eq(Y, X)

)
X ∈ s → cl of(X) ∈ quot
B ∈ quot →

arb B ∈ s & cl of(arb B) = B

Y ∈ s →
(
Eq(X,Y)

↔ cl of(X) = cl of(Y)
)

END equiv classes

Note: the facts
∅ /∈ quot
s =

⋃
quot

X ∈ B ∈ quot → cl of(X) = B

are not ‘exported’

REUSE OF ‘GOOD TRICKS’ – II
(constructions, proofs)

THEORY recursive fcn (dom, Lt, a, b, P)
(∀t ⊆ dom)

(
t 6= ∅

→ (∃m ∈ t)(∀u ∈ t)¬Lt(u, m)
)

-- Lt is thereby assumed to be
-- irreflexive and well-founded on dom

==> (rec)

(∀x, y ∈ s)
((

Lt(x, y) → ¬Lt(y, x)
)

& ¬Lt(x, x)
)

...

(∀ v ∈ dom)
(
rec(v) =

a
(
v,

{
b
(
v, w, rec(w)

)
: w ∈ dom

| Lt(w, v) & P
(
v, w, rec(w)

) }))
END recursive fcn

THEORY OF Σ

A joint application of this recursive fcn and of

THEORY finite induction(n, P)
Finite(n) & P(n)

==> (m)

m ⊆ n & P(m) & (∀ k ⊆ m)
(
k 6= m → ¬P(k)

)
END finite induction

is the (easily generalizable, and giving a Σ insen-
sitive to operand rearrangement and grouping)

THEORY sigma add(abel, +, u)
(∀x, y ∈ abel)(x+y ∈ abel -- closure w.r.t. . . .

& x+y = y+x) -- . . . comm. op.
u ∈ abel & (∀x ∈ abel)(x+u = x) -- unit el’t
(∀x, y, z ∈ abel)

(
(x+y)+z = x+(y+z)

)
-- assoc.

==> (Σ) -- summation operation

Σ(∅) = u
& (∀x ∈ N)(∀ y ∈ abel)

(
Σ({[x, y]}) = y

)
is map(F) & Finite(F) & range(F) ⊆ abel

& domain(F) ⊆ N →
Σ(F) = Σ(F ∩G) + Σ(F \G) -- additivity

END sigma add

INDUCTIVE SETS – I

Preliminary to a very general construction of
inductive sets, we can define into-ness, injectiv-
ity, inductive closedness, and surjectivity :

Maps(R,S, T) ↔:
(∀x ∈ S)(∀y)

(
R(x, y) → y ∈ T

)
Disj(R,S) ↔:
(∀u, v ∈ S)(∀y)

(
R(u, y) & R(v, y) → u = v

)
IndEncl(S, R, A) ↔:

A ⊆ S & Maps(R,S, S \ A) & Disj(R,S)

IndClosed(N, R, A) ↔:
IndEncl(N, R, A) &
(∀t)

(
A ⊆ t & Maps(R, t, t) → N ⊆ t

)
Exhs(R, T, S) ↔:

(∀y ∈ T)(∃x ∈ S)(R(x, y))

INDUCTIVE SETS – II
Then we can construct:

THEORY indClosure(s, r, a)
IndEncl(s, r, a)

==> (n, indCl)
n = indCl(a)
... ...
B ⊆ a → IndClosed(indCl(B), r, B)
IndClosed(n, r, a)
... ...
X ∈ n → IndClosed(indCl({X}), r, {X})

END indClosure

THEORY weakInduction(n, r, a, p)
IndClosed(n, r, a)
X ∈ a → p(X)
X ∈ n & p(X) & r(X, Y) → p(Y)

==>
a = ∅ → n = ∅
Exhs(r, n \ a, n)
X ∈ n → p(X)

END weakInduction

INDUCTIVE SETS – III

THEORY subTree(n, r, a, tree)
IndClosed(n, r, a)
X ∈ n → IndClosed(tree(X), r, {X})

==>
... ...
T 6= ∅ & T ⊆ n

→ (∃m ∈ T)(∀u ∈ T)
(
m /∈ tree(u) \ {u}

)
-- N.B.: this paves the way to
-- recursive constructions over n
... ...

END subTree

THEORY strongInduction(n, r, a, tree, p)
IndClosed(n, r, a)
X ∈ n → IndClosed(tree(X), r, {X})
Y ∈ n & (∀x ∈ n)

(
Y ∈ tree(x) \ {x} → p(x)

)
→ p(Y)

==>
X ∈ n → p(X)

END strongInduction

Classical examples of inductive sets, which can
be constructed and exploited by means of the
above THEORIES are: the set N of natural num-
bers ; the set of all finite lists with components
drawn from a fixed base set A; the set of all terms
over a signature

CONCLUSION

The obvious goal of modularization is to avoid
repeating similar steps when the proofs of two
theorems are closely analogous

Modularization must also conceal the details of
a proof once they have been fed into the system
and successfully certified

When coupled to a powerful underlying set the-
ory, indefinitely expansible with new function sym-
bols generated by Skolemization, the technical
notion of “theory” illustrated above appears to
meet such proof-modularization requirements

