Three-variable statements of set-pairing

$$
\begin{gathered}
\text { Andrea Formisano - Università di Perugia } \\
\text { Dipartimento di Matematica ed Informatica } \\
\text { Eugenio G. Omodeo - Università di L'Aquila } \\
\text { Dipartimento di Informatica } \\
\text { Alberto Policriti - Università di Udine } \\
\text { Dipartimento di Matematica ed Informatica }
\end{gathered}
$$

Denis Richard's 60th birthday Clermont-Ferrand, 16 may 2002

Research related to COST action n. 274 (TARSKI) http://tarski.org
and to MURST / MIUR 40\%: Aggregate- and number-reasoning ...

(2) Pairing in antiquity

In the first place, there were three kinds of human beings, not merely the two sexes, male and female, as at present: there was a third kind as well, which had equal shares of the other two, [...]. Secondly, the form of each person was round all over, with back and sides encompassing it every way, [...]. Terrible was their might and strength, and the thoughts of their hearts were great, that they even conspired against the gods.

Plato, Symposium

Toolkit for weak aggregate theories

(E) $\quad \forall x \forall y(\forall v(v \in x \leftrightarrow v \in y) \rightarrow x=y)$
(N) $\quad \exists z \forall v \neg v \in z$
(P) $\quad \forall x \forall y \exists p \forall v(v \in p \leftrightarrow(v=x \vee v=y))$
(W) $\quad \forall x \forall y \exists w \forall v(v \in w \leftrightarrow(v \in x \vee v=y))$
(L) $\quad \forall x \forall y \exists \ell \forall v(v \in \ell \leftrightarrow(v \in x \& \neg v=y))$
(R) $\quad \forall x \exists r((r \in x \vee r=x) \& \neg \exists v(v \in r \& v \in x))$
(\mathbf{A}^{n}) $\quad \forall x_{0} \cdots \forall x_{n}\left(x_{0} \in x_{1} \in \cdots \in x_{n} \rightarrow \neg x_{n}=x_{0}\right)$

$$
n=0,1,2, \ldots
$$

Universes of aggregates

All of the above sentences are provable within

- full Zermelo-Fraenkel set theory ZF
(Note: $\left.\frac{(\mathrm{N})}{\emptyset}=\frac{(\mathrm{P})}{\{x, y\}}=\frac{(\mathrm{W})}{x \cup\{y\}}=\frac{(\mathrm{L})}{x \backslash\{y\}}\right)$
- Tarski's theory of hereditarily finite sets (equipollent to Peano arithmetic)

By leaving some of these sentences out of our selection of axioms, we can frame our investigation inside less classical, but nevertheless useful, variants of set theory. E.g.,

- multisets do not meet extensionality, (E);
- hypersets do not meet regularity, (R), or even acyclicity, (A)

Through Skolemization of (N), (W), (L) ...

\ldots. one obtains a constant, \emptyset, and dyadic operation symbols, with and less, designating the null set and single-element addition and removal

$$
a, b \xrightarrow[\text { with }]{\longmapsto} a \cup\{b\} \text { and } a, b \stackrel{\text { ess }}{\longmapsto} a \backslash\{b\},
$$

respectively. We can continue with:

$$
\begin{array}{rll}
\{x, y\} & =: & (\emptyset \text { with } x) \text { with } y \\
(x, y)=: & \{\{x, y\},\{x, x\}\} \\
x \circlearrowleft y=: & \{x \text { less } y, x \text { with } y\} \\
\langle x, y\rangle=: & \{y, y\} \odot x \\
{[x, y]=:} & (x \circlearrowleft y)<x \\
\lfloor x, y\rfloor=: & x \text { with }(y \text { with }(y \text { with } x)) \\
\lceil x, y\rceil=: & \{\{x, x\},\{\{x, x\},\{y,\{y, y\}\}\}\} \tag{7}
\end{array}
$$

Of these, only (2), (4), (5), (6), and (7) can be regarded as acceptable pairing operations in a full-fledged set theory:

From $\{x, y\}$, one cannot retrieve unambiguously x or y (because $\{x, y\}=\{y, x\}$);
from $x \oslash y$, only y can be retrieved with certainty

Any theory of aggregates endowed with an acceptable pairing notion enables one to restate the theory in purely equational, quantifier-free terms

This bridge between two logical systems enables experimental comparison based on state-of-art automated proof-assistants

Quick historical survey

1. (N) \& (P) is a modern recasting of the axiom of elementary sets, which came second (after extensionality) in Zermelo's theory (1908)
2. The first reduction of the ordered pair notion to unordered pair enters into set theory with Norbert Wiener, who seeks (1914) to bring Ernst Schröder's algebraic formalism (which we call map arithmetic) closer to a theory of classes
3. Kazimierz Kuratowski refines (~ 1921) the ordered pair notion into

$$
(x, y)=: \quad\{\{x, y\},\{x\}\}
$$

4. Alfred Tarski (in the 1940s)

- notices that the components x, y can be retrieved not only from (x, y) but also from $(x, y) \cup\{\emptyset\}$
- finds a roundabout way of stating

$$
\text { (OP) } \quad \forall x \forall y \exists p(p \backslash\{\emptyset\}=(x, y))
$$

in three variables (without derived constructs)

- checks that (OP) $\dashv \vdash(P)$

Thereby, he succeeds in translating
the whole of ZF into map arithmetic

Arithmetic of maps: ‘logical’ axioms

$$
\begin{aligned}
& P \cup Q=Q \cup P \\
& \overline{\bar{P} \cup Q} \cup \overline{\bar{P} \cup \bar{Q}}=P \\
& (P \cup Q) \circ R=P \circ R \cup Q \circ R \\
& P \smile \smile=P \\
& (P \circ Q)^{\smile}=Q \smile \circ P \smile
\end{aligned}
$$

Proper axioms of a weak aggregate theory
(E) $\overline{\epsilon^{\smile} \circ \bar{\epsilon} \cup \bar{\epsilon} \smile o \in} \cup \iota=\iota$
(\mathbf{A}^{n}) $\underbrace{\in \circ \cdots \circ \in \cup \bar{\iota}=\bar{\iota}, ~}_{n+1 \text { factors }}$
etc.

Tarski's restatement of (P) in 3 var's is:

$$
\text { (OP) } \quad \forall x \forall y \exists q\left(q \pi_{0} x \& q \pi_{1} y\right)
$$

where

$$
q \pi_{0} x \leftrightarrow:\left\{\begin{array}{c}
\exists y(x \in y \& y \in q \& \\
\neg \exists q(q \in y \& q \neq x)) \& \\
\neg \exists y(\exists x(y \in x \& x \in q \& \\
\neg \exists q(q \in x \& q \neq y)) \& y \neq x)
\end{array}\right.
$$

and

$$
q \pi_{1} y \leftrightarrow:\left\{\begin{array}{l}
\exists x(y \in x \& x \in q) \& \\
\neg \exists x(\exists y(x \in y \& y \in q) \& \\
\left.\neg q \pi_{0} x \& x \neq y\right)
\end{array}\right.
$$

Maddux' translation technique - I

Predicates π_{0}, π_{1} which—like the derived predicates above—meet the abstract properties (OP),

$$
\forall q \forall x_{1} \forall x_{2}\left(q \pi_{0} x_{1} \& q \pi_{0} x_{1} \rightarrow x_{1}=x_{2}\right),
$$

and

$$
\forall q \forall y_{1} \forall y_{2}\left(q \pi_{1} y_{1} \& q \pi_{1} y_{2} \rightarrow y_{1}=y_{2}\right)
$$

are called conjugated (quasi-) projections and are the key for translating each sentence of a first-order theory into an equivalent 3-variable sentence

Maddux' translation technique - II

$$
\begin{aligned}
& \text { Assume } L^{\smile} \circ L \cup R \smile \circ R \subseteq \iota, \quad L \smile \circ R=L \circ \mathbb{1}=R \circ \mathbb{1}=\mathbb{1} \text {. } \\
& \text { Let } i, j=0,1,2, \ldots \\
& \operatorname{th}(L, R \| 0)=: \quad L \quad \operatorname{th}(L, R \| i+1)=: \operatorname{th}(R, R, i) \circ L \\
& \operatorname{th} 2(L, R, P \| i, j) \quad=: \quad\left(\operatorname{th}(L, R, i) \circ \operatorname{th}^{\smile}(L, R, j)\right) \cap P \\
& \operatorname{sibs}(L, R \|[]) \quad=: \quad \mathbb{I} \\
& \operatorname{sibs}\left(L, R \|\left[\mathrm{v}_{i} \mid \vec{V}\right]\right) \quad=: \quad \operatorname{th} 2(L, R, \operatorname{sibs}(L, R, \vec{V}), i, i) \\
& \mathrm{mXpr}\left(L, R \| \mathrm{v}_{i}=\mathrm{v}_{j}\right)=: \quad \operatorname{th} 2(L, R, \iota, i, j) \circ \mathbb{I} \\
& \mathrm{mXpr}\left(L, R \| \mathrm{v}_{i} \in \mathrm{v}_{j}\right) \quad=: \quad((\operatorname{th}(L, R, i) \circ \in) \cap \operatorname{th}(L, R, j)) \circ \mathbb{1} \\
& \mathrm{mX} \operatorname{pr}(L, R \| \neg \varphi) \quad=: \quad \overline{\mathrm{m} X p r}(L, R, \varphi) \\
& \mathrm{mXpr}(L, R \| \varphi \& \psi) \quad=: \quad \mathrm{mXpr}(L, R, \varphi) \cap \mathrm{mXpr}(L, R, \psi) \\
& \mathrm{mXpr}(L, R \| \exists \vec{V} \varphi) \quad=: \quad \operatorname{sibs}(L, R, \operatorname{freeVars}(\exists \vec{V} \varphi)) \circ \mathrm{mXpr}(L, R, \varphi) \\
& \operatorname{Maddux}(L, R \| \chi) \quad \leftrightarrow: \quad \mathrm{mX} \operatorname{pr}(L, R, \chi)=\mathbb{1}
\end{aligned}
$$

Can we find any simpler 3-variable rendering of set pairing ?

We can e.g. strengthen (P) into (N) \& (W) \& (L), and take advantage of (E)

It can in fact be shown that

$$
\mathbf{(N)} \&(\mathbf{W}) \&(\mathrm{~L}) \nvdash(\mathrm{E}) \overbrace{\forall x \forall y \exists d x \circlearrowright y=d}^{(\mathrm{D})}
$$

In primitive symbols, this rendering
(where v, w, ℓ can be renamed x, y, y) is

$$
\text { (D) } \begin{aligned}
& \forall x \forall y \exists d(x \in d \& \forall v(v=y \\
& \leftrightarrow \exists w(w \in d \& v \in w) \\
&\& \exists \ell(\ell \in d \& \neg v \in \ell)))
\end{aligned}
$$

Set pairing under (N) \& (W) \& (L) and (E)

To translate into equational form-via Roger Maddux' techniqueany axiomatic theory extending (N) \& (W) \& (L) \& (E), it will now suffice to single out predicates λ, ρ which can be proved to be conjugated projections via the restrained inferential apparatus named \mathcal{L}_{3} in Tarski\&Givant87, under assumptions (E) \& (D)

Here are the desired λ, ρ
(corresponding to the pairing function $[x, y]$):

$$
\begin{array}{rll}
v \mu d \quad & \leftrightarrow: & \exists w(w \in d \& v \in w) \\
& \& \exists \ell(\ell \in d \& \neg v \in \ell) \\
d \lambda x & \leftrightarrow: & \forall v(v=x \leftrightarrow v \mu d) \\
q \rho y & \leftrightarrow: & \exists d(d \in q \& d \lambda y \\
& & \& \exists x(x \in d \& \forall v(v \mu q \rightarrow v=x)))
\end{array}
$$

Instead of directly deriving $\operatorname{QProj}(\lambda, \rho)$ from (E) \& (D) in \mathcal{L}_{3}, the authors

- translated $\lambda, \rho,(E) \&(D), \operatorname{QProj}(\lambda, \rho)$ into map arithmetic, e.g.,

$$
\begin{aligned}
\mu & =: & & \in \circ \in \cap \notin \circ \in \\
\lambda^{\wedge} & =: & & \mu-\bar{\iota} \circ \mu \\
\rho & =: & & (\in \cap \overline{\mu \smile} \circ \overline{\bar{\imath}} \circ \in) \circ \lambda \\
\operatorname{QProj}(L, R) & \leftrightarrow: & & L^{\longleftarrow} \circ L \cup R \smile \circ R \subseteq \iota \& L^{\smile} \circ R=\mathbb{1}
\end{aligned}
$$

- and then exploited a standard theorem-prover, Otter (from the Argonne National Laboratory)
This is a prelude to a wider experimentation related to equational formulations of set theories

Note: (E) \& (W) \& (L) cannot be stated in 3 var's

Formulation of set-theoretical notions

Set pairing under $\left(A^{5}\right) \&(W) \&(L) \&(E)$

Here are conjugated projections α, β which correspond to the pairing function $\lfloor x, y\rfloor$:

$$
\begin{array}{lll}
\alpha=: & \operatorname{syq}(\in \cap \in \circ \in \circ \in \circ \in, \in) \\
\beta & =: & \gamma_{3} \circ \operatorname{syq}(\in \cap \in \circ \in, \in)
\end{array}
$$

where

$$
\begin{array}{rll}
\operatorname{syq}(P, Q) & =: & \overline{P \smile \circ \bar{Q} \cap \overline{\bar{P}} \circ Q} \\
\gamma_{n} & =: & \in \smile-(\epsilon \circ(\underbrace{\in \circ \cdots \circ \epsilon}_{n \text { factors }})
\end{array}
$$

The single-valuedness of α and β is easily derived (with Otter) from a 3 -var statement of $(E) \&\left(A^{5}\right)$

Then we must add

$$
\left(\mathrm{OP}_{1}\right) \quad \alpha \smile \circ \beta=\mathbb{1}
$$

as an explicit axiom

Thanks to $\operatorname{QProj}(\alpha, \beta)$, getting a 3-variable translation of (W) \& (L) becomes a routine matter

Set pairing under (R) \& (N) \& (W) \& (L)

Here are conjugated projections car, cdr which correspond to the pairing function $\lceil x, y\rceil$:
arb $=$: funcPart($\left.\epsilon^{\smile}-\in \smile 0 \in\right)$
car $=$: arboarb
arb_lessArb $=: \quad \operatorname{syq}\left(\epsilon-\right.$ arb $\left.^{\smile}, \epsilon\right) \circ$ arb
$\mathrm{cdr}=: \quad \mathrm{syq}\left(\in \circ \operatorname{arb}_{\mathrm{l}} \mathrm{lessArb}{ }^{-}-\right.$arb $\left.^{\smile}, \in\right) \circ \mathrm{car}$
where syq is as before and

$$
\text { funcPart }(P)=: P-P \circ \bar{\iota}
$$

Since (R) is in three variables, and the single-valuedness of arb and car can be proved quite easily, we can handle this case like the preceding one

Conclusions

Experimentation with a typical theorem-prover indicates that equational formulations of aggregate theories, based on map arithmetic, can favorably compete with more conventional firstorder formulations
(Similar indications come from the work of Johan G. F.
Belinfante, carried out within the framework of Gödel-Bernays' class theory)

To achieve results in map arithmetic human guidance consists, instead of in pointing out key intermediate lemmas, in developing a systematic layered architecture of generic Iaws

