
Notes from the logbook
of a proof-checher’s project?

Domenico Cantone1, Eugenio G. Omodeo2, Jacob T. Schwartz3, Pietro Ursino1

1 University of Catania, Dipartimento di Matematica e Informatica
{cantone,ursino}@dmi.unict.it

2 University of L’Aquila, Dipartimento di Informatica omodeo@di.univaq.it
3 University of New York, Department of Computer Science, Courant Institute of

Mathematical Sciences schwartz@cs.nyu.edu

Introduction

We are developing a software system which ingests proofs formalized within
Zermelo-Fraenkel set theory and checks their compliance with mathematical
rigor. It will accept trivial steps as obvious, without necessarily being clever
at discovering how to fill large gaps in a proposed mathematical argument. It
will be able to process large proof scripts (say dozens of thousands of proofware
lines written on persistent files), without necessarily acting as a highly interactive
proof assistant. Over the years, the documentation of our project (entrusted, to
a large extent, to electronic correspondence) has come to form a thick logbook,
of which we will transcribe three extracts in this paper.

The design of a proof checker must face a variety of design issues, partly
because proof technology as a whole has not reached, as of today, a plateau on
which applications, for example in the areas of program correctness and security
protocol verification, can firmly rely. On the other hand, such a wealth of ideas
is encompassed in the software of state-of-the-art proof systems as to give us an
embarrassingly wide choice: which techniques and methods should we include
among our basic inference ingredients, from which reasoning paradigms can we
gain deep insights and intellectual stimuli for further research?

In any project, a yardstick is needed to judge on virtues and drawbacks of
technical solutions and to keep under constant focus the most critical design
issues on which ultimate success depends: in our case the yardstick is a huge
proof script, our privileged “scenario” file, which evolves in parallel with our
prototype proof-checker, supports its functional testing, and brings to light the
need for new functions and linguistic features. It was decided from the outset
that our scenario should lead from “first principles”, namely the rudiments of set
theory, to a most important achievement of classical mathematical analysis, the
Cauchy Integral Theorem. The “backbone” of the scenario, consisting only of
definitions and theorem statements, became available very early in the project;

? Work partially supported by MURST/MIUR 40% project Aggregate- and number-
reasoning for computing: from decision algorithms to constraint programming with
multisets, sets, and maps

then it was progressively fleshed out with proof details. We can roughly assess
that 50% of the scenario development has been carried out and that, once com-
pleted, the scenario will consist of 20 to 25 thousand lines of proofware. Only
occasionally we have digressed into the specification of peripheral proof scripts:
this happened, for instance, when we exercised with a “rib” to be grafted at
some early point in the backbone of analysis, namely the treatment of inductive
sets which we will outline in Sec.1; it happened again when we wanted to assess
how easily amenable to our computerized proof environment would be a program
correctness verification.

The issue of proof modularization acquires great importance as the size of
proof scripts increases. The obvious goal of modularization is to avoid repeating
similar steps when the proofs of two theorems are closely analogous. Modular-
ization must also conceal the details of a proof once they have been fed into the
proof-checker and successfully certified. We discussed this issue at length in [8],
of which this paper is a continuation, and therefore will limit ourselves here to
producing new examples (cf. Sec.1). We will delay again a deep discussion on the
nature of the basic inference steps a proof-verifier rooted in set theory should
(and reasonably can) handle; however, since decision algorithms for fragments
of first-order theories play a crucial role in this connection, we will take into
consideration a sample case, related to ordered Abelian groups, and dissect it in
Sec.2.

The third newsletter in this paper (Sec.3) concerns a turning point in our
main scenario: how to define the set of real numbers and prove their basic proper-
ties. Historically this been done in several ways,which offer competing advantages
when computer-based verification is intended. In Dedekind’s approach, which is
the most directly set-theoretic of all, a real number is defined simply as a non-
null set of rational numbers, bounded above, which contains no largest element
and which contains each rational number smaller than any of its elements. Sums
are easily defined for real numbers defined in this way, but it is only easy to
define products for positive reals directly. This forces separate treatment of real
products involving negative reals, causing the proof of statements like the as-
sociativity of multiplication to break up into an irritating number of separate
cases. For this reason, we choose a different approach, originally developed by
Cantor in 1872, in a simplified contemporary variant which we draw from [2].

[· · · · · · TO BE ELABORATED · · · · · ·]

1 Inductive sets

Inductive sets occur often in mathematics and in computer science. The most
classical of them is the set N of natural numbers, generated from the singleton
{0} by the unitary increment operation. Another classical example is the set
of all finite lists with components drawn from a fixed, though generic, base set
A. A third example is the set of all terms over a signature. Inductive sets can
be conceived of dynamically: namely, in each specific instance we can identify a
set of seeds and a generating map which—we may think—repeatedly puts new

elements into a set whose initial value is the set of seeds and whose ending value,
the inductive set, is reached when a certain ‘plateau’ (that is, the fulfillment of
a certain closure property) has been achieved, perhaps by a transfinite number
of iterations. Below, in specifying the notion of inductive set formally, we will
insist that seeds should not be reachable again as the construction proceeds.
More generally, the construction of an inductive set should be carried out under
some guarantee that no element of the inductive set can admit more than one
construction. This will make reasoning about the elements of an inductive set
particularly plain and effective.

Notice that the generating map is not necessarily single-valued: while in the
paradigmatic case of natural numbers it is such, to best treat the other two cases
mentioned above we will figure out two suitable multi-valued generating maps.
(For uniformity, as regards N, we will proceed from the definitions

0 =Def∅ and hasNext(X, Y) ↔Def Y = X with X,
even though the definition next(X) =Def X with X might seem better tailored to
the case than the one of hasNext.) Another crucial design choice is whether the
generating map should be a ‘small’ relation (representable as a set of pairs) or
a global relation (representable by a formula ϕ ≡ ϕ(X, Y)). We opt here for a
global map.

A more than adequate technical surrogate for the above-hinted (and intu-
itively more appealing) dynamic construction of an inductive set will consist of
two steps:

1. Identify a superset of the desired inductive set. This must contain the seeds
and must be closed w.r.t. the generating map.

2. Extract the inductive set from the superset determined at Step 1.

Since inductive sets are normally infinite, the infinity axiom
s∞ 6= ∅& [∀x ∈ s∞ | {x} ∈ s∞]

of Zermelo-Fraenkel set theory will be needed to effect Step 1. To make Step 2
a plain routine matter, we will design a THEORY offering adequate support to
it.

This revolution of replacing potential infinity by actual infinity in mathemat-
ical reasoning was made by Cantor and Dedekind in the late nineteenth century
(cf. [1]). Thanks to the availability of the recursive definition scheme, a single
actual infinite set, even one which is as indistinct as s∞ is, suffices to get started.

1.1 How to frame an inductive set

To convey an intuitive grasp of the notion of inductive set, we state beforehand
that the set s∞ may fail to be inductive relative to the singleton set {arb (s∞)} of
seeds and to the generating map Sngl(X, Y) ↔Def Y = {X}. As a matter of fact,
momentarily assuming for definiteness that arb (s∞) = ∅, we should not regard
s∞ as being inductive relative to {∅},Sngl if it had such ‘superfluous’ elements as
{∅, {∅}} or {∅, {∅, {{∅}}}} instead of consisting of only the ‘mandatory’ elements
in the following infinite list:

∅, {∅}, {{∅}}, {{{∅}}},

We will develop in Sec.1.2 the machinery needed to form the subset of s∞
consisting precisely of the sets arb (s∞), {arb (s∞)}, and {· · · {arb (s∞)} · · · }.
The best we can say now is that s∞ frames the desired inductive set. Below
we will exploit s∞ to construct sets which frame other important inductive sets
such as the set N of all natural numbers, the family H of all hereditarily finite
sets, and the set tuples(A) of all finite lists over A.

Before continuing, we must provide the formal definition of inductively
closed set, which presupposes a couple of notions regarding a global map R
(in a sense into-ness and injectivity):

Maps(R,S, T) ↔Def [∀x ∈ S ∀y |R(x, y) → y ∈ T],
Disj(R,S) ↔Def [∀u ∈ S, v ∈ S ∀y |R(u, y) & R(v, y) → u = v],

IndClosed(N,R, A) ↔Def A ⊆ N & Maps(R,N, N \A) & Disj(R,N)
& [∀t |A ⊆ t & Maps(R, t, t) → N ⊆ t].

A set S which candidates to frame a set N such that IndClosed(N,R, A) will
be required to meet a less stringent condition than being inductively closed,
namely the following:

Frames(S, R,A) ↔Def A ⊆ S & Maps(R,S, S \A) & Disj(R,S).

How to frame the inductive set N of natural numbers After recalling
that

0 =Def∅, next(X) =DefX with X, and hasNext(X, Y) ↔DefY = next(X),

let us recursively define for all X:

f(X) =Def {0} ∪ { next(v) : u ∈ X, v ∈ f(u) } .

It is obvious that SngVal(hasNext) holds, where single-valuedness is defined
as follows:

SngVal(R) ↔Def [∀x, u, v |R(x, u) & R(x, v) → u = v].

Moreover, we have the following:

Lemma 1 Frames(f(s∞), hasNext, {0}) .

Proof. Obviously 0 ∈ f(s∞) and arb (s∞) ∈ s∞ & 0 ∈ f(arb (s∞)) hold, and
therefore next(0) ∈ f(s∞). It can also be proved that Y ∈ f(s∞) → next(Y) ∈
f(s∞): If Y = 0 this has just been seen; When 0 6= Y ∈ f(s∞), pick u, v such that
u ∈ s∞ & v ∈ f(u) & Y = next(v), hence Y ∈ f({u}), where {u} ∈ s∞, so that
next(Y) ∈ f(s∞). We readily get Maps(hasNext, f(s∞), f(s∞) \ {0}) from the
above argument. Then we get next(X) = next(Y) → X = Y since, if by absurd
hypothesis X 6= Y held along with X ∪ {X} = Y ∪ {Y }, then X ∈ Y & Y ∈ X
would hold, and hence the set {X, Y } would violate the regularity axiom. Hence
Disj(hasNext, f(s∞)) holds, and the thesis follows.

How to frame the family of hereditarily finite sets The construction of
a set H satisfying both ∅ ∈ H and the implication

X ∈ H → P(X) ⊆ H

for all X, parallels very closely the construction just seen, the main change being
that we define

f(X) =Def {∅} ∪ { v ∪ P(v) : u ∈ X, v ∈ f(u) } ,

and replace hasNext by the single-valued map hasPow(X, Y) ↔DefY = X∪P(X).
The only detail where the proof of Frames(f(s∞), hasPow, {∅}) differs from

the proof of Lemma 1 is the way we get X ∪ P(X) = Y ∪ P(Y) → X = Y : If
by absurd hypothesis X ∪ P(X) = Y ∪ P(Y) and X 6= Y held together, then
we would have (X ⊆ Y ∨ X ∈ Y) & (Y ⊆ X & Y ∈ X); but we must discard
X ⊆ Y ⊆ X (which would contradict X 6= Y), as well as X ∈ Y ∈ X (which
would conflict with the regularity axiom), as well as X ⊆ Y ∈ X (which would
imply Y ∈ Y , conflicting with regularity again), as well as Y ⊆ X ∈ Y .

How to frame the inductive sets of based tuples Constructing a set which
frames the inductive set which we will elect as the domain of all flat tuples over
a base set A will be easier if we begin with a THEORY, devoid of assumptions,
on ordered pairs:1

THEORY orderedPair()
=⇒ (cons, car, cdr, nl, len)

car
(
cons(X, Y)

)
= X

cdr
(
cons(X, Y)

)
= Y

cons(X, Y) = cons(U, V) → X = U & Y = V
nl 6= cons(X, Y) -- plausibly, nl is an alias of ∅
len(nl) = 0
len(cons(X, Y)) = next(len(Y))

END orderedPair.

We make the invocation
APPLY ([− , −], hd, tl, [], lth) orderedPair()

in sight of exploiting the operations thus introduced to build the desired theory

THEORY tuples()
=⇒ (tups, len)

[] ∈ tups(A)

1 Inside the THEORY orderedPair, if we adopt the pair construction proposed in [8],
then we can recursively define len as follows:

len(T) =Defarb
({

next(len(r)) : x ∈ T, y ∈ x, r ∈ y | [∃` | T = 〈`, r〉]
})

.

V ∈ tups(A) → A× {V } ⊆ tups(A) \ {[]}
[] ∈ T & [∀ v ∈ T |A× {v} ⊆ T] → tups(A) ⊆ T
len([]) = 0
len([− , T]) = next(len(T))

END tuples.

During the construction of this theory, before we can indicate how to build
the inductive set tups(A) for each fixed A, we will need a set that frames tups(A).
We concentrate on this problem for the time being, postponing to the end of
Sec.1.2 the discussion on how to use the framing set to achieve what is desired.

We recursively define an auxiliary function tups in two parameters:

tups(A, V) =Def { [] } ∪
⋃
{A× tups(A,w) : w ∈ V } .

E.g., it should be intuitively clear that when V is a finite ordinal (intended à la
von Neumann), tups(A, V) will consist of those tuples over the base set A whose
length does not exceed V .

For any fixed A, we then put

Pads(V,W) ↔Def W ∈ A× {V },
tupp ↔Def tups(A, s∞),

after which we can easily prove that

[] ∈ tupp,
V ∈ tupp & Pads(V,W) → W ∈ tupp,
Maps(Pads, tupp, tupp \ {[]}),
U 6= V & Pads(U,W) → ¬ Pads(V,W),

to wit,
Frames(tupp, Pads, {[]}) .

How to frame the inductive sets of terms Once we will own the theory
tuples specified above, in order to frame the desired inductive set terms of all
terms over a signature S, we can proceed as follows.

We will begin with an auxiliary function terms in two parameters:

terms(S, X) =Def

⋃
{〈car(p), args〉 : p ∈ S, y ∈ X, args ∈ tups(terms(S, y))

| len(args) = cdr(p)} ,

where tups and len result from an invocation
APPLY (tups, len) tuples() ,

and where each p in S is interpreted as a “symbol” whose two components are
the “lexeme” and the degree (often called “arity”), respectively.

For any fixed signature σ, after (locally) putting

termm =Def terms(σ, s∞) ,
Pads(V,W) =Def [∃p ∈ σ, a ∈ tups(termm) \ {[]} |W = 〈car(p), a〉& len(a) = cdr(p)

& car(a) = V],
consts ↔Def

{
〈car(p), []〉 : p ∈ σ | cdr(p) = 0

}
,

one can prove that
Frames(termm, Pads, consts) .

1.2 Theories related to inductive closure

[· · · · · · TO BE ELABORATED · · · · · ·]
Weak induction What confers an inductive set n its appeal is the following
THEORY,

THEORY weakInduction(n, r, a, p)
IndClosed(n, r, a)
X ∈ a → p(X)
X ∈ n & p(X) & r(X, Y) → p(Y)

=⇒
a = ∅ → n = ∅
Exhs(r, n \ a, n)
-- Hint: if any w ∈ {v ∈ n \ a | [∀x ∈ n | ¬r(x, v)]} existed, removing
-- it from n would lead to a set contradicting the minimality of n
X ∈ n → p(X)
-- Hint: a ⊆ {x ∈ n | p(x)}& Maps(r, {x ∈ n | p(x)}, {x ∈ n | p(x)})

END weakInduction,

where the surjectivity notion

Exhs(R, T, S) ↔Def [∀y ∈ T ∃x ∈ S |R(x, y)]

is involved.
Weak induction constitutes a familiar reasoning template which every reader

knows from experience (if only with arithmetic induction) to be extremely ver-
satile; moreover, this scheme can be generalized into strong induction, as we will
see soon.

Getting an inductive set from a framing set The following THEORY
circumscribes a given set a of seeds with an inductive set n, while also associating
an inductive subtree with each element of n:

THEORY indClosure(s, r, a)
Frames(s, r, a)

=⇒ (n, indCl)
-- Hint: indCl(B) =Def

⋂
{t ⊆ s | (B ⊆ s → B ⊆ t) & Maps(r, t, t)}, i.e.,

-- indCl(B) =Def{x ∈ s | [∀t ⊆ s | (B ⊆ s → B ⊆ t) & Maps(r, t, t) → x ∈ t] }
n = indCl(a)
a ⊆ n & n ⊆ s
B ⊆ n & [∀x ∈ indCl(B) ∀y | r(x, y) → y /∈ B] → IndClosed(indCl(B), r, B)
B ⊆ a → IndClosed(indCl(B), r, B)
IndClosed(n, r, a)

Exhs(r, indCl(B) \B, indCl(B))
B ⊆ n → B ⊆ indCl(B) & indCl(B) ⊆ n
Y ∈ n & X 6= Y & X ∈ indCl({Y }) → Y /∈ indCl({X})
X ∈ n → IndClosed(indCl({X}), r, {X})

END indClosure.

A well-founded relation is naturally associated with any inductive set n en-
dowed with subtrees:

THEORY subTree(n, r, a, tree)
IndClosed(n, r, a)
X ∈ n → IndClosed(tree(X), r, {X})

=⇒
X ∈ n → tree(X) ⊆ n
--Hint: APPLY (t, indCl) indClosure(n, r, a) provides indCl({X})
-- s.t. Maps(r, indCl({X}), indCl({X})) & indCl({X}) ⊆ t ⊆ n
X ∈ n → ¬ r(X, X)
-- Hint: if X ∈ n & r(X, X), then removal of X from n would lead
-- to a set contradicting the minimality of n
T 6= ∅& T ⊆ n → [∃m ∈ T ∀u ∈ T |m /∈ tree(u) \ {u}]
-- N.B.: this paves the way to recursive constructions over n
X ∈ n & r(X, Y) → tree(Y) (tree(X)
X ∈ n & Y ∈ tree(X) & X ∈ tree(Y) → X = Y
a 6= ∅& [∀x ∈ n ∃ y |R(x, y)]) → Infinite(n)
-- here the following notion of Infinite is being referred to:
-- Infinite(I) =Def

[
∃c | [∃k ∈ c | k ⊆ I] & [∀k ∈ c ∃h ∈ c | h (k]

]
,

-- and a clue on how to get a witness c of the infiniteness of n is:
-- pick c =Def{tree(X) : X ∈ n}

END subTree.

[· · · · · · TO BE ELABORATED · · · · · ·]

Strong induction

THEORY strongInduction(n, r, a, tree, p)
IndClosed(n, r, a)
X ∈ n → IndClosed(tree(X), r, {X})
Y ∈ n & [∀x ∈ n | Y ∈ tree(x) \ {x} → p(x)] → p(Y)

=⇒
X ∈ n → p(X)
-- Hint: Assuming the contrary, we could fix (exploiting subTree)
-- an m in n s.t. ¬ p(m) & [∀u ∈ n |m ∈ tree(u) \ {u} → p(u)]

END strongInduction.

Uniqueness of natural numbers Let us now momentarily restrict our study
to the special case when the seeds (whose set is passed as third parameter to the

THEORYes weakInduction, indClosure, and subTree seen above) form a singleton
set a = { e }, and moreover the generating map (which is passed as second
parameter to the said THEORYes) is single-valued.

To ease the subsequent discussion, we introduce notions which combine single-
valuedness with the notions Maps, Exhs, and Disj (into-ness, surjectivity, and
injectivity) introduced earlier. Along with them, we introduce the new notion
of bijectivity, which like the others refers to a global function G instead of to a
more generic global dyadic relation. Moreover, we supply a restricted notion of
inductively closed set:

Sends(G, S, T) ↔Def [∀x ∈ S |G(x) ∈ T],
Surj(G, T, S) ↔Def [∀y ∈ T | ∃x ∈ S)

(
G(x) = y],

Inj(G, S, T) ↔Def [∀u ∈ S, v ∈ S, y ∈ T |G(u) = y & G(v) = y → u = v],
Bij(G, S, T) ↔Def Surj(G, T, S) & Inj(G, S, T),

SuccClosed(N,G,A) ↔Def A ⊆ N & Sends(G, N,N \A) & Inj(G, N,N)
& [∀t |A ⊆ t & Sends(G, t, t) → N ⊆ t] .

As one should expect, the following THEORY, where segments take the place
of trees, easily ensues from subTree:

THEORY subSegm(n, succ, e, segm)
n = segm(e)
SngVal(succ)
e ∈ n
X ∈ n → IndClosed(segm(X), succ, {X})

=⇒
X ∈ n & succ(X, Y) → segm(Y) = segm(X) \ {X}
-- i.e., U ∈ n & succ(U, V) & W ∈ segm(U) \ {U} → W ∈ segm(V)
T 6= ∅& T ⊆ n → [∃m ∈ T ∀u ∈ T | u ∈ segm(m)]
X, Y ∈ n → X ∈ segm(Y) ∨ Y ∈ segm(X)
U, V,W ∈ n & V ∈ segm(U) & W ∈ segm(V) → W ∈ segm(U)
[∀x ∈ n ∃ y |R(x, y)]) → Infinite(n)

END subSegm.

It should be clear that such n, e, and g are meant to represent the natural
numbers, their first element, and their successor function, respectively. The fact
that this representation is essentially unique should emerge from a theory with
the following traits:

THEORY uniqNat(n, g, e, nn, gg, ee)
SuccClosed(n, g, { e })
SuccClosed(nn, gg, { ee })

=⇒ (p, q)
p(e) = ee
q(ee) = e
X ∈ n → p

(
f(X)

)
= ff

(
p(X)

)
Y ∈ nn → q

(
ff(Y)

)
= f
(
q(Y)

)

Bij(p, n, nn)
Bij(q, nn, n)
X ∈ n → q

(
p(X)

)
= X

Y ∈ nn → p
(
q(Y)

)
= Y

END uniqNat.

[· · · · · · TO BE ELABORATED · · · · · ·]
Free closure relative to given constructors Inductive sets can also be
generated by a set ff of constructors:

THEORY freeClosure(s,ff, a)
a ⊆ s
F ∈ ff → Maps(F, s, s \ a)
F ∈ ff → Disj(F, s)
F,G ∈ ff & F 6= G & F (U, Y) → ¬G(V, Y)
-- Accordingly, Maps(

⋃
ff, s, s \ a) & Disj(

⋃
ff, s)

=⇒ (n, tree)
IndClosed(n,

⋃
ff, a)

X ∈ n → IndClosed(tree(X),
⋃

ff, {X})
END freeClosure.

However, the constructors have, in many applications, a degree (or “arity”)
which should be taken into account. We do not discuss here how to deal with
this complication.

[· · · · · · TO BE ELABORATED · · · · · ·]

2 A decision procedure for ordered Abelian groups

Ordered Abelian groups G are characterized by the presence of an associative-
commutative addition operator ‘+’, with identity ‘0’ and inverse ‘−’, and also a
comparison operator x > y satisfying

[∀x ∈ G, y ∈ G | ¬x > x & (x > y ∨ x = y ∨ x < y)] ,
[∀x ∈ G, y ∈ G, z ∈ G | (x > y & y > z) → x > z] ,
[∀x ∈ G, y ∈ G, z ∈ G | x > y → z − y > z − x] .

The last axiom plainly implies that

[∀x ∈ G, y ∈ G, z ∈ G | x > y → x + z > y + z] .

A standard theorem prover, e.g. Otter [7], can be successfully exploited to prove
many theorems about such groups (cf. Figure 1, where a variant axiomatic sys-
tem is adopted); moreover, the decision problem for the fully quantified theory
of Abelian ordered groups (OAG, for short) was solved by Yu. Gurevich in [3].
Normally the user of our proof-checking environment is in charge of providing
proofs within THEORYes; however, in a favorable case such as the one at hand,

formula list(usable) -- axioms and definitional extensions
-- Abelian group axioms
[∀x, ∀y, ∀z | (x⊕y)⊕z=x⊕(y⊕z)] -- associativity
[∀x | x⊕e=x] -- right unit
[∀x | x⊕	x=e] -- right inverse
[∀x, ∀y | x⊕y=y⊕x] -- commutativity
-- ordering axioms (axioms concerning non-negativeness)
[∀x, ∀y | nneg(x) & nneg(y) → nneg(x⊕y)]
[∀x | nneg(x) ∨ nneg(x)]
[∀x | nneg(x) & nneg(x) → x=e]
-- definitional extensions (below we will also use A	B as a short for A⊕	B)
[∀x | nneg(x) → |x|=x] -- definition of the absolute value . . .
[∀x | ¬nneg(x) → |x|=	x] -- . . . def’n of the absolute value
[∀x, ∀y | x4y ↔ nneg(y	x)] -- definition of comparison

end of list

formula list(usable) -- provable laws
[∀x, ∀y, ∀z | x⊕y=x⊕z → y=z] -- A1: cancellation law
[∀x, ∀y | 	(x	y)=y	x] -- B (from A1, Ba, Bb alone)
[∀x, ∀y | x4y ∨ y4x] -- C: totality
[∀x | x4x] -- D: reflexivity
[∀x, ∀y, ∀z | x4y & y4z → x4z] -- E: transitivity
[∀x, ∀y, ∀z | x4y & x6=y & y4z → x6=z] -- E1: transitivity
[∀x, ∀y, ∀z | x4y & y4z & y 6=z → x6=z] -- E2: transitivity
[∀x, ∀y, ∀z | x4y → x⊕z4y⊕z] -- F: additivity
[∀x, ∀y, ∀z | x⊕z=y⊕z → x=y] -- A2: cancellation law
[∀x, ∀y, ∀z | x4y & x6=y → x⊕z6=y⊕z] -- F1, strict additivity
[∀x | |x	x|=e] -- 1
[∀x | x4|x|] -- 2
[∀x | |(|x|)|=|x|] -- 3
[∀x | |x|=e ↔ x=e] -- 4
[∀x | |	x|=|x|] -- 5
[∀x, ∀y | x⊕y4|x|⊕|y|] -- 6
[∀x, ∀y | |x⊕y|4|x|⊕|y|] -- 7
[∀x, ∀y, ∀z | |x	z|4|x	y|⊕|y	z|] -- 8
[∀x, ∀y | ¬nneg(x) → x4|y| & x6=|y|] -- 9
[∀x, ∀y | nneg(y) → x	y4x⊕y] -- 10
[∀x, ∀y | ||x|	|y||4|x	y|] -- 11
[∀x, ∀y | |x|	||y|	|x||4|y|] -- 12

end of list

Fig. 1. Basic lemmas on ordered Abelian groups proved with Otter’s assistance

if we supply the decision method for OAG, then the user can view it as a THE-
ORY which is able to find autonomously the proof of any asserted theorem, and
to reject a wrong statement. Incidentally, note that this theory has plenty of
applications: the standard additive groups based on Z, Q, and R (see Sec.3), to
mention a few, satisfy the axioms of OAG.

Here we provide a simple decision procedure for finite collections of unquan-
tified statements in the theory OAG, whose correctness is based on very basic
facts of Abelian group theory and the theory of reals.

For standard notation and classical results in group theory we shall refer to
[5].

Our decision procedure will be based upon the following considerations. Let
C be a conjunction of unquantified statements of OAG.

Fact 1 If such a conjunction C is satisfiable, i.e. has a model which is an ordered
Abelian group G′, it can plainly be modeled by the subgroup G of G′ generated
by the elements of G′ which correspond to the symbols which appear in the state-
ments of C. Hence it has a model which is an ordered Abelian group with finitely
many generators. Conversely, if there exists such a model, then C is satisfiable.

Therefore we can base our analysis on an understanding of the structure of
finitely generated ordered Abelian groups G.

The additive group of reals contains many such ordered subgroups with
finitely many generators, as does the additive group of real vectors of dimen-
sion d for any d, if we order these vectors lexicographically. We will see in what
follows that these examples are generic, in the sense that any finitely generated
ordered Abelian group with m generators can be embedded into the additive
group of real vectors of dimension (at most) m by an order-preserving isomor-
phism (we will call such isomorphisms ‘order-isomorphisms’).

Fact 2 For any given Abelian group G, the following two conditions are equiv-
alent:

– G is finitely generated;
– G is a direct sum of a finite number of cyclic groups.

Fact 3 Infinite cyclic groups are isomorphic to the group Z of integers.

Facts 2 and 3 state well-known results, which can be found in any book on
group theory (for instance, see [5]).

Since the order axiom plainly rules out any finite cyclic summands, we can
conclude that

Fact 4 Our conjunction C is satisfiable if and only if it is satisfied in an ordered
Abelian group which can be decomposed as direct sum of finitely many copies of
Z.

Groups which can be decomposed as direct sums of infinite cyclic groups are
called free groups.

Fact 5 Up to an isomorphism, a finitely generated free group G is uniquely
determined by the number m of its direct summands, which is called the rank of
G.

To show, as anticipated, that any finitely generated ordered free group of
rank m can be embedded into the additive group of real vectors of dimension m
ordered lexicographically, it is convenient to study the possible orderings that
such groups can have.

Definition 1 Let G be an Abelian ordered group. An element x ∈ G is said to
be infinitesimal if there exists a y ∈ G such that mx ≤ y holds for all signed
integers m.

An ordered Abelian group with no infinitesimals is said to be Archimedean.

We will establish by elementary means the following two facts, which taken
together will give the decision result of our interest.

Fact 6 Every Archimedean ordered Abelian group is order-isomorphic to a sub-
group of R.

Fact 7 Every (non-Archimedean) finitely generated ordered Abelian group (G, <
) of rank m is order-isomorphic to a lexicographically ordered direct sum of the
type

((G0, <0)⊕ (G1, <1),⊕ · · · ⊕ (Gk, <k), <lex),

where k 6 m and where (Gi, <i) is an Archimedean Abelian ordered group, for
1 6 i 6 k.

Remark 1 Notice that proofs of the above two facts can be found in [4]. For
the reader’s convenience, we will give below self-contained elementary proofs.

The above considerations lead us immediately to the following result.

Lemma 2 Let C be a conjunction of unquantified statements of the theory OAG,
involving n distinct variables. Then C is satisfiable in the theory OAG if and only
if C is satisfiable in the additive group of real vectors of dimension n, endowed
with the lexicographic order.

Proof. Plainly, if C is satisfiable in the additive group of real vectors of dimension
n endowed with the lexicographic order, then C is satisfiable in the theory OAG.

Conversely, assume that C is satisfiable in the theory OAG and let G be an
ordered Abelian group in which C is satisfiable. From Fact 1, we can assume
that G is also finitely generated. Therefore, from Facts 6 and 7, it follows that G
can be embedded in the additive group of real vectors of dimension n, ordered
lexicographically, thus concluding the proof of the theorem.

It is easy to reduce the satisfiability problem for the lexicographically ordered
additive group of real vectors of dimension n to the satisfiability problem for the
additive group of reals. Indeed, a real vector of dimension n is just a collection

of n real numbers x1, ..., xn, addition of two such vectors is just addition of their
individual components, and the condition x < y for two vectors x and y can be
written as the disjunction

(x1 < y1) ∨ (x1 = y1 & x2 < y2) ∨ . . . ∨ (x1 = y1 & ... & xn−1 = yn−1 & xn < yn).

This observation shows that the satisfiability problem for any collection of un-
quantified statements in the theory of ordered Abelian groups reduces without
difficulty to the problem of satisfying a corresponding collection of real linear
equations and inequalities. This is the standard problem of linear programming,
which can be tested for solvability using any convenient linear programming
algorithm (cf. [6]).

Therefore we have:

Corollary 1 The collection of unquantified statements of the theory OAG has a
decidable satisfiability problem.

2.1 Proof of Fact 6

Let G be an Archimedean ordered Abelian group. We show that G is order-
isomorphic to a subgroup of R.

If there is just one generator, then G is plainly isomorphic to the ordered
group of integers.

Let us fix y > 0. Then for each x we consider the following set

S(x) =def {m/n : m,n ∈ N | n > 0 & nx > my}.

Notice that the set S(x) is defined independently of the way that m/n is rep-
resented by a fraction, since the order axioms imply that if nx > my then
knx > kmy for each positive k, and conversely if knx > kmy then nx 6 my is
impossible.

We show next that S(x) is a Dedekind cut in the set of rationals, for each
x ∈ G. Let x ∈ G, then there is a positive integer n such that n /∈ S(x) and
−n ∈ S(x), so S(x) is neither empty or all the rationals. In addition S(x) is
bounded above, because if m/n /∈ S(x) (i.e., my > nx) and m′/n′ > m/n (i.e.,
nm′ > mn′), then m′/n′ /∈ S(x) (i.e., m′y > n′x). Moreover, if m/n ∈ S(x) then
there are m′, n′ such that m′/n′ ∈ S(x) and m′/n′ > m/n. Summing up, S(x)
is a cut in the set of rationals, so that the following definition is well-given

r(x) =def supS(x) .

We claim that the mapping r maps G to the reals in an order-preserving
manner. First we show that r is an isomorphism from G into the reals. Let
m/n < r(x) and m′/n′ < r(x′), both denominators n and n′ being positive.
Then nx > my and n′x > m′y, so nn′x > mn′y and nn′x > m′ny, and therefore

nn′(x + x′) > (mn′ + m′n)y

from which it follows that m/n + m′/n′ belongs to S(x + x′). This proves that
r(x+x′) > r(x)+ r(x′). Now suppose that r(x+x′) > r(x)+ r(x′), and let m/n
and m′/n′ respectively be rationals which approximate r(x) (resp. r(x′)) well
enough from above so that we have m/n+m′/n′ ∈ S(x+x′), while m/n > r(x)
and m′/n′ > r(x′). This implies that nx ≤ my, n′x ≤ m′y, and nn′(x + x′) >
(mn′ + m′n)y. This is impossible since our first two inequalities imply that
nn′(x+x′) ≤ (mn′+m′n)y. It follows that r(x+x′) > r(x)+r(x′) is impossible,
so r(x+x′) = r(x)+r(x′), i.e. r is a homomorphism of G into the ordered group
of reals. Finally, suppose that r(x) = 0. Then we cannot have x > 0, since if we
did then nx > y would be true for some positive n, so 1/n would be a member of
S(x), implying that r(x) > 1/n, which is impossible. Similarly if x < 0 it would
follow that r(−x) ≥ 1/n for some positive n, also impossible. Since r has been
seen to be additive r(−x) = −r(x), and it follows that x must be 0, proving that
r is an isomorphism of G into the reals.

Next we show that the mapping r is also order-preserving. Indeed, if x′ > x,
and the rational number m/n (with positive denominator) belongs to S(x), then
nx > my, and so nx′ > my also, proving that m/n belongs to S(x′). That is,
x′ > x implies that S(x′) ⊇ S(x), and thus plainly implies that r(x′) > r(x).
On the other hand, if r(x′) = r(x), we would have r(x′ − x) = 0, which implies
x′ − x = 0, i.e., x′ = x, a contradiction. Thus, we must have r(x′) > r(x),
completing our treatment of the case in which G is Archimedean.

2.2 Proof of Fact 7

Given an ordered Abelian group (G, <), for any subset A of G we use the fol-
lowing notation:

A+ =def {x ∈ A | x > 0} .

Definition 2 Let H be a subgroup of an ordered Abelian group G. We say that
H is isolated in G if for every x ∈ H and y ∈ (G \H)+ we have x < y.

Definition 3 When {(Gi, <i)}i∈I is a finite collection of ordered Abelian groups,
we denote by (⊕i∈I(Gi, <i), <lex) the direct sum of the above groups equipped
with lexicographic order inherited from the defined orders {(<i)}i∈I .

It is straightforward to verificate that the described object is an ordered Abelian
group.

Definition 4 Given two ordered Abelian groups (G1, <1) and (G2, <2), we
write (G1, <1) ∼=G (G2, <2) to mean that (G1, <1) and (G2, <2) have isomorphic
group structure. Likewise, we write (G1, <1) ∼=≤ (G2, <2) to mean that (G1, <1)
and (G2, <2) have isomorphic orderings. Finally, we write (G1, <1) ∼= (G2, <2)
to mean that that there exists a group isomorphism from (G1, <1) onto (G2, <2)
which is also an ordering isomorphism. In this case we say briefly that (G1, <1)
and (G2, <2) are order-isomorphic.

From now on, all the groups are intended to be ordered free Abelian groups.

Proposition 1 Let (G, <) be a finitely generated ordered Abelian group and let
IG be the collection of all infinitesimals of (G, <). Then

(i) (IG, <) is an ordered Abelian subgroup of G;
(ii) if in addition (G, <) is a non-trivial finitely generated group, then G 6= IG.

Proof. (i) It is sufficient to show that IG is closed under the group operation +.
Let x1, x2 ∈ IG and let y1, y2 ∈ G be such that nxi < yi, for every signed integer
n. Then, for every signed integer n we have:

n(x1 + x2) = nx1 + nx2 < y1 + y2 6 2 max(y1, y2) ,

so that x1 + x2 ∈ IG.
(ii) Let g1, . . . , gk be a system of generators for G. We show that at least

one among the generators must be non-infinitesimal. If by contradiction each gi

is infinitesimal, then for each i = 1, . . . , k there exist an element yi such that
ngi < yi, for every signed integer n. Consider the element y1 + . . . + yk. This
can be written as n1g1 + . . . + nkgk, for suitable signed integers n1, . . . , nk. But
since, ngi < yi, for i = 1, . . . , k, we also have n1g1 + . . . + nkgk < y1 + . . . + yk,
which is a contradiction.

Proposition 2 Let (B,<) be an ordered subgroup of (G, <). Define the follow-
ing relation <G/B over G/B ×G/B:

α <G/B β iff x < y, for some x ∈ α & y ∈ β ,

for α, β ∈ G/B, with α 6= β.
If (B,<) is isolated in (G, <), then (G/B,<G/B) is an ordered Abelian group.

Proof. We only check that the relation <G/B is well-defined. So, let α, β ∈ G/B,
with α 6= β and assume by contradiction that there exist x1, x2 ∈ α and y ∈ β,
such that

x2 < x1 , y < x1 , and x2 < y.

Then x1−x2 ∈ B+. Moreover, by the ordering axioms we get x1−x2 > x1−y > 0.
This contradicts the isolation hypothesis on B, since x1 − y /∈ B.

Remark 2 It can easily be checked that

(i) the subgroup IG of the infinitesimals of an ordered Abelian group G is isolated
in G;

(ii) the group (G/IG, <G/IG
) has no infinitesimals.

Proposition 3 Let (B,<) be a ordered subgroup of a finitely generated ordered
Abelian group (G, <). If (B,<) is isolated in (G, <), then

(G, <) ∼= ((G/B,<G/B)⊕ (B,<), <lex).

Proof. Let α1 . . . αs be a system of generators for G/B. Let us pick ai ∈ αi,
for i = 1, . . . , s. Also, let as+1 . . . at be a system of generators for B. Let x
be an element of G and let [x] be the class of G/B which contains x. Then
[x] =

∑s
i=1 kiαi, for suitable ki ∈ N, with i = 1, . . . , s, so that x−

∑s
i=1 kiai =∑t

i=s+1 kiai, for suitable ki ∈ N, with i = s + 1, . . . , t. Hence a1, . . . , at is a
system of generators for G.

It can easily be shown that the map from G to G/B ⊕ B induced by the
following correspondence of generators

a1 → α1

. . .
as → αs

as+1 → as+1

. . .
at → at

is a group-isomorphism from G onto G/B ⊕B.
Hence, we only need to show that such a map also preserves ordering. Let

x, y ∈ G be such that x < y. Let x =
∑t

i=1 kiai and y =
∑t

i=1 miai. Then(
s∑

i=1

kiαi,
t∑

i=s+1

kiai

)
<lex

(
s∑

i=1

miαi,
t∑

i=s+1

miai

)
. (1)

Indeed, by Proposition 2 we cannot have [x] >G/B [y]. If [x] <G/B [y], we have
(1) immediately. On the other hand, if [x] = [y], then ki = mi for all i ∈ {1 . . . s}
and since x < y implies that

∑t
i=s+1(mi − ki)ai > 0, we have again (1).

Theorem 1 Let (G, <) be a finitely generated ordered Abelian group. Then

(G, <) ∼= ((G0, <0)⊕ (G1, <1)⊕ · · · ⊕ (Gk, <k), <lex) ,

where each (Gi, <i) is a finitely generated Archimedean ordered Abelian group,
for i = 0, 1, . . . , k.

Proof. We proceed by induction on the rank of G. Let IG be the subgroup of
the infinitesimals of G (cf. Proposition 1 (i)). If IG is the null subgroup, then we
are done, since G itself is Archimedean. On the other hand, if IG is non-trivial,
then by Proposition 3 we have

(G, <) ∼= ((G/IG, <G/IG
)⊕ (IG, <), <lex) ,

since, as observed in Remark 2, IG is isolated in G. Notice also that (G/IG, <G/IG

) is a finitely generated Archimedean ordered Abelian group. Let ϕ1 be an order-
isomorphism from (G, <) onto ((G/IG, <G/IG

)⊕ (IG, <), <lex).
From Proposition 1 (ii), IG ⊂ G, so that the quotient group (G/IG, <G/IG

)
is non-trivial. Therefore the rank of IG is strictly less than the rank of G. By
induction we have

(IG, <) ∼= ((G1, <1)⊕ . . .⊕ (Gk, <k) ,

where (Gi, <i) is a finitely generated Archimedean ordered Abelian group, for
i = 1, . . . , k. Let ϕ2 be an order-isomorphism from (IG, <) onto ((G1, <1)⊕ . . .⊕
(Gk, <k).

Let us put
(G0, <0) =def (G/IG, <G/IG

) .

Then we claim that

(G, <) ∼= ((G0, <0)⊕ (G1, <1)⊕ · · · ⊕ (Gk, <k), <lex) ,

Let us define the map

ϕ : G → G0 ⊕G1 ⊕ · · · ⊕Gk

by putting

– ϕ(a) = (a0, a1, . . . , ak), where ϕ1(a) = (a0, a
∗), for some a∗ ∈ IG, and

– ϕ2(a∗) = (a1, . . . , ak).

Plainly, ϕ is a group-isomorphism from G onto G0 ⊕G1 ⊕ · · · ⊕Gk. Hence,
we only need to prove that ϕ is preserves also ordering.

To this end, let a, b ∈ G be two distinct elements such that a < b. Let

(a0, a
∗) =def ϕ1(a)

(b0, b
∗) =def ϕ1(b)

(a1, . . . , ak) =def ϕ2(a∗)
(b1, . . . , bk) =def ϕ2(b∗) .

Plainly a0 6G/IG
b0. If a0 <G/IG

b0, we are done. On the other hand, if
a0 = b0, then we must have a∗ < b∗. Therefore, we have (a1, . . . , ak) <lex

(b1, . . . , bk), which it plainly implies (a0, a1, . . . , ak) <lex (b0, b1, . . . , bk), namely
ϕ(a) <lex ϕ(b), since we are under the assumption that a0 = b0.

3 Defining real numbers using Bishop’s ‘regular’ Cauchy
sequences

With Cantor’s approach, real numbers are defined as follows. Call an infinite
sequence xn of rational numbers a Cauchy sequence if, for every positive rational
r, there exists an integer N such that the absolute value |xn − xm|Q is less than
r whenever m and n are both larger than N . Sequences of this kind can be
added, subtracted, and multiplied componentwise and their sums, differences,
and products are still Cauchy sequences. We can now introduce an equivalence
relationship Same real between pairs x, y of such sequences: Same real(x, y) is
true if and only if, for every positive rational r, there exists an integer N such
that the absolute value |xn − yn|Q is less than r whenever n is larger than N .
The set of equivalence classes of Cauchy sequences, formed using the equivalence
relationship Same real, is then the set of real numbers. If two pairs of Cauchy

sequences x, y and w, z are equivalent, then the (componentwise) sum of x and w
is equivalent to the sum of y and z, and similarly for the products and differences.
Hence these operations define corresponding operations on the real numbers,
which are easily seen to have the same properties of associativity, commutativity,
and distributivity, and the same relationship to comparison operators defined
similarly.

Given any rational number r we can form a sequence repeating r infinitely
often, and then map r to the equivalence class (under Same real) of this se-
quence. This construction is readily seen to embed the rationals into the reals,
in a manner that preserves addition, multiplication, and subtraction. The zero
rational maps in this way into an additive identity for real addition, and the unit
rational into the multiplicative identity for reals. If a Cauchy sequence yn is not
equivalent to the zero of reals, then it is easily seen that for all sufficiently large
n the absolute values |yn|Q are non-zero and have a common lower bound. Hence
for any other Cauchy sequence xn we can form the rational quotients xn /Q yn

for all sufficiently large n, and it is easy to see that this gives a Cauchy sequence
whose equivalence class depends only on that of x and y. It follows that this
construction defines a quotient operator x/R y for real numbers, and it is not
hard to prove that this quotient operator relates to real multiplication in the
appropriate inverse way.

[· · · · · · TO BE ELABORATED · · · · · ·]

In preparation for definition of the real numbers and real arithmetic we in-
troduce the usual fractional notation and absolute value operation for rational
numbers:

N / M =Def Fr to rats(〈N, ∅〉, 〈M, ∅〉) ,
|Q|Q =Def if is nonnegQ(Q) then Q else RevQ(Q) fi ,

where N,M ∈ N and Q ∈ Q.

The following list of statements gives some basic facts about these operations.
In particular, they imply that the operation which associates the value |a−Q b|Q

with every pair a, b of rational numbers can be viewed as a ‘distance’ function:

P ∈ Q → [∃` ∈ N,m ∈ N |m 6=∅& `/ m=P] ,
{J,K, M, N}⊆N\{∅}& L ∈ N & N⊆M & K 6=L & K 6=M

→ L/ M ∈ Q & J / M 6Q J / N & N / K 6Q M / K & K / N 6=L/ N
& J / K 6=J / M & 0Q 6Q L/ M & (0Q=L/ M ↔ L=∅)
& 1 / K +Q 1 / K=2 / K & 1 / (2 ∗ K)+Q 1 / (2 ∗ K)=1 / K ,

P ∈ Q & Q ∈ Q & R ∈ Q → P 6Q |P |Q &
∣∣∣|P |Q∣∣∣Q=|P |Q

& (|P |Q=0Q ↔ P=0Q) & |RevQ(P)|Q=|P |Q & |P +Q Q|Q 6Q |P |Q +Q |Q|Q
&
∣∣∣|P |Q −Q |Q|Q

∣∣∣
Q

6Q |P −Q Q|Q & |Q−Q Q|Q=0Q

& |P −Q Q|Q=|Q−Q P |Q & |P −Q Q|Q 6Q |P −Q R|Q +Q |R −Q Q|Q
& |Q|Q −Q

∣∣∣|P |Q −Q |Q|Q
∣∣∣
Q

6Q |P |Q ,

|P ∗Q Q|Q=|P |Q ∗Q |Q|Q ,

Q ∈ Q → [∃m ∈ N |Q<Q m / 1] ,
P ∈ Q & J ∈ N & J 6=∅& [∀k ∈ N | k6=∅ → |P |Q <Q J / k] → P=0Q .

An infinite sequence s1, s2, . . . , sN , . . . of rational numbers is said to be reg-
ular if its N -th component and its M -th component differ (in absolute value)
by at most 1 / N +Q 1 / M for all pairs N,M of positive integers. The formal
definition given below looks slightly more complicated than this because we
number sequence components starting with 0 instead of with 1. On the other
hand, we find it unnecessary to impose single valuedness; this is why our first
definition introduces ‘regular maps’ instead of ‘regular seqs’. An example of a
regular sequence is one whose components are all equal. Note also that the se-
quence {〈n, 2 / next(n)〉 : n ∈ N} is not regular, because e.g. |2 / 1 −Q 2 / 4|Q =
6 / 4 >Q 5 / 4 = 1 / 1+Q 1 / 4.

regular maps =Def {s : s⊆N × Q | N=dom s & [∀p ∈ s, q ∈ s |
|cdr(p)−Q cdr(q)|Q 6Q 1 / next(car(p))+Q 1 / next(car(q))]} ,

Q ∈ Q → {〈n, Q〉 : n ∈ N} ∈ regular maps .

In using regular sequences to represent real numbers, we regard two regular
sequences s, t as being ‘the same’ (in the sense of representing the same real
number) if, for all N , their corresponding components sN , tN differ by 2/ N at
most. Taking our ‘numbering from 0’ unit into account once more, we define:

Same regmap(S, T) ↔Def [∀p ∈ S, q ∈ T | car(p)=car(q)
→ |cdr(p) −Q cdr(q)|Q 6Q 2 / next(car(p))] .

The following theorem is used to derive the fact that the Same regmap rela-
tionship is transitive and hence is an equivalence relation. It states that if s and
t are equivalent regular sequences, then for each positive integer k there is an m
such that for all N greater than or equal to m, the corresponding components

sN and tN of s and t differ at most by 1 / k.

S ∈ regular maps & T ∈ regular maps → (Same regmap(S, T) ↔ [∀k ∈ N |
k6=∅ → [∃m ∈ N,∀p ∈ S, q ∈ T |m⊆car(p) & car(p)=car(q)

→ |cdr(p) −Q cdr(q)|Q 6Q 1 / k]]) ,

S ∈ regular maps & T ∈ regular maps & R ∈ regular maps → Same regmap(S, S)
& (Same regmap(T,R) & Same regmap(R,S) → Same regmap(S, T)) .

The following auxiliary theories ease derivation of the reflexivity of Same regmap,
and give us a convenient way of obtaining a regular sequence from a regular map.

THEORY shifted regmap(s, f,m)
s ∈ regular maps
[∀n ∈ N | f(n) ∈ N & n⊆f(n)]

=⇒ (t)
t={[k, cdr(p)] : k ∈ N, p ∈ s | car(p)=f(k)}
Same regmap(t, s)
Svm(s) → Svm(t)

END shifted regmap ,

THEORY regmap to seq(t)
t ∈ regular maps

=⇒ (s)
-- s={[n,arb ({cdr(p) : p ∈ t | car(p)=n})] : n ∈ N}
s ∈ regular maps
Svm(s)
Same regmap(t, s)

END regmap to seq .

We are now ready to define real numbers via application of the THEORY
equivalence classes, which also gives a natural embedding of the rational numbers
into the reals.

APPLY equivalence classes(P (x, y) 7→ Same regmap(x, y), s 7→ regular maps)
=⇒ (R,Seq to Re)

[∀x ∈ regular maps | Seq to Re(x) ∈ R]
[∀x ∈ R | arb (x) ∈ regular maps & Seq to Re(arb (x))=x]
[∀x ∈ regular maps, y ∈ regular maps | Same regmap(x, y)

↔ Seq to Re(x)=Seq to Re(y)]
[∀x ∈ regular maps | Same regmap(x,arb (Seq to Re) (x))] ,

-- Rational-to-Real conversion:
Ra to Re(X) =Def Seq to Re({〈n, X〉 : n ∈ N}) ,

-- Real 0:
0R =Def Ra to Re(0Q) ,

-- Real 1:
1R =Def Ra to Re(1Q) .

To introduce the algebraic operations on the set R of reals we need an auxil-
iary bound for the terms of a regular sequence s of rational numbers. We define
the ‘canonical’ bound of such an s to be the least integer m which is at least 2
greater than the absolute value of the first component of s. It follows easily that
m is greater than the absolute value of sN for all N :

canon bound(X) =Def

arb
(
{m : m ∈ N | [∃p ∈ X | car(p)=∅& |cdr(p)|Q +Q 2 / 1 <Q m / 1]}

)
,

S ∈ regular maps & P ∈ S → |cdr|Q(P)<Q canon bound(S) / 1 .

The arithmetic operations on real numbers x, y are now defined in terms of
their rational approximations xN , yN (more precisely, arb (x)N and arb (y)N .

-- Real Sum:
X +R Y =Def Seq to Re

({
〈n, cdr(p)+Q cdr(q)〉 : n ∈ N, p ∈ arb (X) , q ∈ arb (Y)

| next(n+ n)=car(p) & car(p)=car(q)
})

,
-- Real Negative:

RevR(X) =Def Seq to Re
(
{〈car(p),RevQ(cdr(p))〉 : p ∈ arb (X)}

)
,

-- Real Subtraction:
X −R Y =Def X +Q RevR(Y) ,

-- Real Multiplication:
X ∗R Y =Def Seq to Re

({
〈n, cdr(p)∗Q cdr(q)〉 : n ∈ N, p ∈ arb (X) , q ∈ arb (Y)

| 2 ∗ ((canon bound(X)∪canon bound(Y))∗ next(n))=next(car(p))
& car(p)=car(q)

})
,

-- Absolute value , i.e. the larger of X and RevR(X):
|X|R =Def Seq to Re({〈car(p), |cdr(p)|Q〉 : p ∈ arb (X)}) ,

is nonnegR(X) ↔Def |X|R=X ,

Z aux(X) =Def arb
({

m : m ∈ N |m 6=∅&

[∀p ∈ X |m 6Q next(car(p)) → 1 / m 6Q |cdr(p)|Q]
})

,
-- Real Reciprocal:

RecipR(X) =Def Seq to Re({〈n,RecipQ(cdr(p))〉 : n ∈ N, p ∈ arb (X) ,
m ∈ N |m=Z aux(arb (X)) & next(car(p))=(n∪m) ∗ (m ∗ m))} ,

-- Real Quotient:
X /R Y =Def X ∗R RecipR(Y) .

Here, for example, the definition of RecipR states that in order to get the recip-
rocal of a real number X, one must consider a regular sequence s1, s2, . . . , sN , . . .
in X, determine the least positive integer m satisfying (1/ m)6Q |si|Q for all i
greater than or equal to m, and then construct the regular sequence t whose first
m components t1, t2, . . . , tm all equal RecipQ(sm∗m∗m) and whose subsequent
components tN with m in N are defined as tN = RecipQ(sN ∗m∗m): the desired
reciprocal Y of X will be the real number to which t belongs.

It is important to show that the above operations produce real numbers when
their operands are reals, and that the results of the arithmetic operations do not

depend on the way in which one chooses a representative sequence from each
of the equivalence classes representing reals. For example, for real addition, we
need to know that

S ∈ regular maps & T ∈ regular maps
→
{
〈n, cdr(p)+Q cdr(q)〉 : n ∈ N, p ∈ S, q ∈ T

| next(n+ n)=car(p) & car(p)=car(q)
}
∈ regular maps ,

X ∈ R & Y ∈ R → X +R Y ∈ R ,
S1 ∈ regular maps & S2 ∈ regular maps & T1 ∈ regular maps

& T2 ∈ regular maps & Same regmap(S1, S2) & Same regmap(T1, T2)
→ Same regmap(

{
〈n, |cdr|Q(p)+Q |cdr|Q(q)〉 : n ∈ N, p ∈ S1, q ∈ T1

| next(n+ n)=car(p) & car(p)=car(q)
}
,{

〈n, |cdr|Q(p)+Q |cdr|Q(q)〉 : n ∈ N, p ∈ S2, q ∈ T2

| next(n+ n)=car(p) & car(p)=car(q)
}
) .

Analogously, for the real reciprocal operation, we need to know that

S ∈ regular maps & ¬Same regmap(S, {〈n,0Q〉 : n ∈ N})
→ [∃m ∈ N |m 6=∅& [∀p ∈ S |m 6Q next(car(p)) → 1 / m 6Q |cdr(p)|Q]] ,

S ∈ regular maps & M ∈ N & M 6=∅& [∀p ∈ S |M 6Q next(car(p)) → 1 / M 6Q |cdr(p)|Q]
→ {〈n,RecipQ(cdr(p))〉 : n ∈ N, p ∈ S | next(car(p))=(n∪M) ∗ (M ∗ M)} ∈ regular maps ,

X ∈ R & X 6=0R → RecipR(X) ∈ R ,
S ∈ regular maps & M1 ∈ N & M2 ∈ N & M1 6=∅& M2 6=∅

& [∀p ∈ S |M1 6Q next(car(p)) → 1 / M1 6Q |cdr(p)|Q]
& [∀p ∈ S |M2 6Q next(car(p)) → 1 / M2 6Q |cdr(p)|Q] → Same regmap

(
{〈n,RecipQ(cdr(p))〉 : n ∈ N, p ∈ S | next(car(p))=(n∪M1) ∗ (M1 ∗ M1)},
{〈n,RecipQ(cdr(p))〉 : n ∈ N, p ∈ S | next(car(p))=(n∪M2)∗ (M2 ∗ M2)}

)
.

We also need to derive the algebraic properties of the basic operations on
reals from the definitions given above, e.g.

X ∈ R & Y ∈ R & W ∈ R
→ X +R Y =Y +R X & W +R (X +R Y)=(W +R X)+R Y & X +R 0R=X

& X +R RevR(X)=0R & X ∗R Y =Y ∗R X & 1R ∗R X=X
& X ∗R 1R=X & (X 6=0R → (X ∗R Y =1R ↔ Y =RecipQ(X))) .

There are important connections between rational and real numbers, such
as the fact that Q is ‘order dense’ in R. The following definitions and theorems
define the ordering of reals and state this fact.

-- Real Maximum:
X maxR Y =Def Seq to Re

({
〈car(p), if cdr(p) 6Q cdr(q) then cdr(q) else cdr(p) fi〉

: p ∈ arb (X) , q ∈ arb (Y) | car(p)=car(q)
})

,
-- Real Ordering:

X 6R Y ↔Def X maxR Y =Y ,
X <R Y ↔Def X maxR Y 6=X ,

X ∈ R & 〈N,Y 〉 ∈ arb (X) → |X −R Ra to Re(Y)|R 6R Ra to Re(1 / N) ,
X ∈ R & Y ∈ R → [∃r ∈ Q |X <R Ra to Re(r) & Ra to Re(r) <R Y] .

Another important connection between real and rational numbers lies in
Dedekind cuts, which are the nonnull sets d of rational numbers, bounded above,

such that every rational not in d is larger than any rational in d. (If we added
the requirement that to any x in d there must correspond a larger rational y
in d, then we could establish a one-to-one correspondence between Dedekind
cuts and real numbers; but this is of no concern to us here.) Below we specify
this notion formally, and define a function translating Dedekind cuts into real
numbers, and then define the operation which determines the least upper bound
of any nonnull set of real numbers bounded above:

dedekind cuts =Def {d : d⊆Q | ∅6=d & d6=Q & [∀x ∈ d, y ∈ Q | y <Q x → y ∈ d]} ,
-- Cut-to-Real conversion:

Dedek to Re(D) =Def Seq to Re
({〈

n,arb (D) +Q
arb ({h/ next(n) : h ∈ N | arb (D) +Q next(h)/ next(n) /∈ D})

〉
: n ∈ N

})
,

D ∈ dedekind cuts → Dedek to Re(D) ∈ R ,
-- Least Upper Bound:

Re LUB(X) =Def Dedek to Re(
⋃
{q : q ∈ Q | [∃x ∈ X | Ra to Re(q) <R x]}) ,

I ∈ R & I 6=∅& [∃y ∈ R,∀x ∈ I | x 6R y]
→ Re LUB(I) ∈ R & [∀y ∈ R | Re LUB(I) <R y ↔ [∀x ∈ I | x 6R y]] .

[· · · · · · TO BE ELABORATED · · · · · ·]

References

1. E. W. Beth. The foundations of mathematics. Horth-Holland, 1959.
2. D. S. Bridges. Foundations of real and abstract analysis. Springer-Verlag, Graduate

Texts in Mathematics vol.174, 1997.
3. J. Gurevič. Elementary properties of ordered Abelian groups. Translations of AMS,

46, pp. 165-192, 1965.
4. A.I. Kokorin, V.M. Kopytov. Fully ordered groups. Wiley and Sons, 1974.
5. L. Fuchs. Abelian groups. Academic Press, 1970.
6. J. P. Ignizio and T. M. Cavalier. Linear Programming. International Series in

Industrial and Systems Engineering. Prentice Hall, New Jersey, 1994.
7. W. W. McCune. Otter 2.0 User Guide. ANL-90/9, Argonne National Laboratory,

Argonne, Illinois, 1990.
8. E.G. Omodeo and J. T. Schwartz. A ‘theory’ mechanism for a proof-verifier based

on first-order set theory. In A. Kakas and F. Sadri, editors, Computational Logic:
Logic Programming and Beyond – Essays in honour of Bob Kowalski, Part II,
volume 2408 of Lecture Notes in Artificial Intelligence, pages 214–230. Springer-
Verlag, Berlin, 2002.

