
Inductive sets

Eugenio G. Omodeo

September 24, 2002

Inductive sets occur often in mathematics and in computer science. The
most classical of them is the set N of natural numbers, generated from the
singleton {0} by the unitary increment operation. Another classical example is
the set of all finite lists with components drawn from a fixed, though generic,
base set A. A third example is the set of all terms over a signature. Inductive
sets can be conceived of dynamically: namely, in each specific instance we can
identify a set of seeds and a generating map which—we may think—repeatedly
puts new elements into a set whose initial value is the set of seeds and whose
ending value, the inductive set, is reached when a certain ‘plateau’ (that is,
the fulfillment of a certain closure property) has been achieved, perhaps by a
transfinite number of iterations. Below, in specifying the notion of inductive
set formally, we will insist that seeds should not be reachable again as the
construction proceeds. More generally, the construction of an inductive set
should be carried out under some guarantee that no element of the inductive
set can admit more than one construction. This will make reasoning about the
elements of an inductive set particularly plain and effective.

Notice that the generating map is not necessarily single-valued: while in the
paradigmatic case of natural numbers it is such, to best treat the other two
cases mentioned above we will figure out two suitable multi-valued generating
maps. (For uniformity, as regards N, we will proceed from the definitions

0 =Def∅ and hasNext(X, Y ) ↔Def Y = X with X,
even though the definition next(X) =Def X with X might seem better tailored to
the case than the one of hasNext.) Another crucial design choice is whether the
generating map should be a ‘small’ relation (representable as a set of pairs) or
a global relation (representable by a formula ϕ ≡ ϕ(X, Y )). We opt here for a
global map.

A more than adequate technical surrogate for the (intuitively more appeal-
ing) dynamic construction of an inductive set will consist of two steps:

1. Identify a superset of the desired inductive set. This must contain the
seeds and must be closed w.r.t. the generating map.

2. Extract the inductive set from the superset determined at Step 1.

Since inductive sets are normally infinite, the infinity axiom
s∞ 6= ∅ & (∀x ∈ s∞)( {x} ∈ s∞)
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will be needed to effect Step 1. To make Step 2 a plain routine matter, we will
design a THEORY offering adequate support to it.

This revolution of replacing potential infinity by actual infinity in mathe-
matical reasoning was made by Cantor and Dedekind in the late nineteenth
century. Thanks to the availability of the recursive definition scheme, a single
actual infinite set, even one which is as indistinct as s∞ is, suffices to get started.

1 How to frame an inductive set

To convey an intuitive grasp of the notion of inductive set, we state beforehand
that the set s∞ may fail to be inductive relative to the singleton set {arb (s∞)}
of seeds and to the generating map Sngl(X, Y ) ↔Def Y = {X}. Momentarily
assuming for definiteness that arb (s∞) = ∅, we should not regard s∞ as being
inductive relative to {∅},Sngl if it had such ‘superfluous’ elements as {∅, {∅}}
or {∅, {∅, {{∅}}}} instead of consisting of only the ‘mandatory’ elements in the
following infinite list:

∅, {∅}, {{∅}}, {{{∅}}}, . . .
We will develop in Sec.2.2 the machinery needed to form the subset of s∞

consisting precisely of the sets arb (s∞), {arb (s∞)}, and {· · · {arb (s∞)} · · · }.
The best we can say now is that s∞ frames the desired inductive set. Below
(Sec.1.1–Sec.1.4) we will exploit s∞ to construct sets which frame other impor-
tant inductive sets such as the set N of all natural numbers, the family H of all
hereditarily finite sets, and the set tuples(A) of all finite lists over A.

Before continuing, we must provide the formal definition of inductively
closed set, which presupposes a couple of notions regarding a global map R
(in a sense into-ness and injectivity):

Maps(R,S, T ) ↔Def (∀x ∈ S)(∀y)
(
R(x, y) → y ∈ T

)
,

Disj(R,S) ↔Def (∀u, v ∈ S)(∀y)
(
R(u, y) & R(v, y) → u = v

)
,

IndClosed(N,R, A) ↔Def A ⊆ N & Maps(R,N, N \A) & Disj(R,N)
& (∀t)

(
A ⊆ t & Maps(R, t, t) → N ⊆ t

)
.

A set S which candidates to frame a set N such that IndClosed(N,R, A) will
be required to meet a less stringent condition than being inductively closed,
namely the following:

Frames(S, R,A) ↔Def A ⊆ S & Maps(R,S, S \A) & Disj(R,S).

1.1 How to frame the inductive set N of natural numbers

After recalling that

0 =Def∅, next(X) =DefX with X, and hasNext(X, Y ) ↔DefY = next(X),

let us recursively define for all X:

f(X) =Def {0} ∪ { next(v) : u ∈ X, v ∈ f(u) } .
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It is obvious that SngVal(hasNext) holds, where single-valuedness is defined
as follows:

SngVal(R) ↔Def (∀x, u, v)(R(x, u) & R(x, v) → u = v).

Moreover, we have the following:

Lemma 1 Frames(f(s∞), hasNext, {0}) .

Proof. Obviously 0 ∈ f(s∞) and arb (s∞) ∈ s∞ & 0 ∈ f(arb (s∞)) hold, and
therefore next(0) ∈ f(s∞). It can also be proved that Y ∈ f(s∞) → next(Y ) ∈
f(s∞): If Y = 0 this has just been seen; When 0 6= Y ∈ f(s∞), pick u, v such
that u ∈ s∞ & v ∈ f(u) & Y = next(v), hence Y ∈ f({u}), where {u} ∈ s∞,
so that next(Y ) ∈ f(s∞). We readily get Maps(hasNext, f(s∞), f(s∞) \ {0})
from the above argument. Then we get next(X) = next(Y ) → X = Y since,
if by absurd hypothesis X 6= Y held along with X ∪ {X} = Y ∪ {Y }, then
X ∈ Y & Y ∈ X would hold, and hence the set {X, Y } would violate the
regularity axiom. Hence Disj(hasNext, f(s∞)) holds, and the thesis follows.

1.2 How to frame the family of hereditarily finite sets

The construction of a set H satisfying both ∅ ∈ H and the implication

X ∈ H → P(X) ⊆ H

for all X, parallels very closely the construction just seen, the main change being
that we define

f(X) =Def {∅} ∪ { v ∪ P(v) : u ∈ X, v ∈ f(u) } ,

and replace hasNext by the single-valued map hasPow(X, Y ) ↔DefY = X∪P(X).
The only detail where the proof of Frames(f(s∞), hasPow, {∅}) differs from

the proof of Lemma 1 is the way we get X ∪ P(X) = Y ∪ P(Y ) → X = Y : If
by absurd hypothesis X ∪ P(X) = Y ∪ P(Y ) and X 6= Y held together, then
we would have (X ⊆ Y ∨ X ∈ Y ) & (Y ⊆ X & Y ∈ X); but we must discard
X ⊆ Y ⊆ X (which would contradict X 6= Y ), as well as X ∈ Y ∈ X (which
would conflict with the regularity axiom), as well as X ⊆ Y ∈ X (which would
imply Y ∈ Y , conflicting with regularity), as well as Y ⊆ X ∈ Y .

1.3 How to frame the inductive sets of based tuples

Constructing a set which frames the inductive set which we will elect as the
domain of all flat tuples over a base set A will be easier if we begin with a
THEORY, devoid of assumptions, on ordered pairs:1

1Inside the THEORY orderedPair, if we adopt the pair construction proposed by Jack, then
we can recursively define len as follows:

len(T ) =Defarb
({

next(len(r)) : x ∈ T, y ∈ x, r ∈ y | (∃l)(T = [l, r])
})

.
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THEORY orderedPair()
==> (cons, car, cdr, nl, len)

car
(
cons(X, Y )

)
= X

cdr
(
cons(X, Y )

)
= Y

cons(X, Y ) = cons(U, V ) → X = U & Y = V
nl 6= cons(X, Y ) -- plausibly, nl is an alias of ∅
len(nl) = 0
len(cons(X, Y )) = next(len(Y ))

END orderedPair

We make the invocation
APPLY ([− , − ], hd, tl, [ ], lth) orderedPair()

in sight of exploiting the operations thus introduced to build the desired theory

THEORY tuples()
==> (tups, len)

[ ] ∈ tups(A)
V ∈ tups(A) → A× {V } ⊆ tups(A) \ {[ ]}
[ ] ∈ T & (∀ v ∈ T )(A× {v} ⊆ T ) → tups(A) ⊆ T
len([ ]) = 0
len([− , T ]) = next(len(T ))

END tuples

During the construction of this theory, before we can indicate how to build
the inductive set tups(A) for each fixed A, we will need a set that frames tups(A).
We concentrate on this problem for the time being, postponing to the end of
Sec.2.2 the discussion on how to use the framing set to achieve what is desired.

We recursively define an auxiliary function tups in two parameters:

tups(A, V ) =Def { [ ] } ∪
⋃
{A× tups(A,w) : w ∈ V } .

E.g., it should be intuitively clear that when V is a finite ordinal (intended à la
von Neumann), tups(A, V ) will consist of those tuples over the base set A whose
length does not exceed V .

For any fixed A, we then put

Pads(V,W ) ↔Def W ∈ A× {V },
tupp ↔Def tups(A, s∞),

after which we can easily prove that

[ ] ∈ tupp,
V ∈ tupp & Pads(V,W ) → W ∈ tupp,
Maps(Pads, tupp, tupp \ {[ ]}),
U 6= V & Pads(U,W ) → ¬ Pads(V,W ),

to wit,
Frames(tupp, Pads, {[ ]}) .
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1.4 How to frame the inductive sets of terms

Once we will own the theory tuples specified above, in order to frame the desired
inductive set terms of all terms over a signature S, we can proceed as follows.

We will begin with an auxiliary function terms in two parameters:

terms(S, X) =Def

⋃
{[car(p), args] : p ∈ S, y ∈ X, args ∈ tups(terms(S, y))

| len(args) = cdr(p)} ,

where tups and len result from an invocation
APPLY (tups, len) tuples() ,

and where each p in S is interpreted as a “symbol” whose two components are
the “lexeme” and the degree (often called “arity”), respectively.

For any fixed signature σ, after (locally) putting

termm =Def terms(σ, s∞) ,
Pads(V,W ) =Def

(
∃p ∈ σ

)(
∃a ∈ tups(termm) \ {[ ]}

)(
W = [car(p), a] & len(a) = cdr(p)

& car(a) = V
)
,

consts ↔Def

{ [
car(p), [ ]

]
: p ∈ σ | cdr(p) = 0

}
,

one can prove that
Frames(termm, Pads, consts) .

2 Theories related to inductive closure

[· · ·TO BE COMPLETED· · · ]
2.1 Weak induction

What confers an inductive set n its appeal is the following THEORY,

THEORY weakInduction(n, r, a, p)
IndClosed(n, r, a)
X ∈ a → p(X)
X ∈ n & p(X) & r(X, Y ) → p(Y )

==>
a = ∅ → n = ∅
Exhs(r, n \ a, n)
-- Hint: if any w ∈ {v ∈ n \ a | (∀x ∈ n)(¬r(x, v))} existed, removing
-- it from n would lead to a set contradicting the minimality of n
X ∈ n → p(X)
-- Hint: a ⊆ {x ∈ n | p(x)} & Maps(r, {x ∈ n | p(x)}, {x ∈ n | p(x)})

END weakInduction

where the surjectivity notion

Exhs(R, T, S) ↔Def (∀y ∈ T )(∃x ∈ S)(R(x, y))

is involved.
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Weak induction constitutes a familiar reasoning template which every reader
knows from experience (if only with arithmetic induction) to be extremely ver-
satile; moreover, this scheme can be generalized into strong induction, as we
will see in Sec.2.3.

2.2 Getting an inductive set from a framing set

The following THEORY circumscribes a given set a of seeds with an inductive
set n, while also associating an inductive subtree with each element of n:

THEORY indClosure(s, r, a)
Frames(s, r, a)

==> (n, indCl)
-- Hint: indCl(B) =Def

⋂
{t ⊆ s | (B ⊆ s → B ⊆ t) & Maps(r, t, t)}, i.e.,

-- indCl(B) =Def{x ∈ s | (∀t ⊆ s)((B ⊆ s → B ⊆ t) & Maps(r, t, t) → x ∈ t) }
n = indCl(a)
a ⊆ n & n ⊆ s
B ⊆ n & (∀x ∈ indCl(B))(∀y)

(
r(x, y) → y /∈ B

)
→ IndClosed(indCl(B), r, B)

B ⊆ a → IndClosed(indCl(B), r, B)
IndClosed(n, r, a)
Exhs(r, indCl(B) \B, indCl(B))
B ⊆ n → B ⊆ indCl(B) & indCl(B) ⊆ n
Y ∈ n & X 6= Y & X ∈ indCl({Y }) → Y /∈ indCl({X})
X ∈ n → IndClosed(indCl({X}), r, {X})

END indClosure

A well-founded relation is naturally associated with any inductive set n en-
dowed with subtrees:

THEORY subTree(n, r, a, tree)
IndClosed(n, r, a)
X ∈ n → IndClosed(tree(X), r, {X})

==>
X ∈ n → tree(X) ⊆ n
--Hint: APPLY (t, indCl) indClosure(n, r, a) provides indCl({X})
-- s.t. Maps(r, indCl({X}), indCl({X})) & indCl({X}) ⊆ t ⊆ n
X ∈ n → ¬ r(X, X)
-- Hint: if X ∈ n & r(X, X), then removal of X from n would lead
-- to a set contradicting the minimality of n
T 6= ∅ & T ⊆ n → (∃m ∈ T )(∀u ∈ T )

(
m /∈ tree(u) \ {u}

)
-- N.B.: this paves the way to recursive constructions over n
X ∈ n & r(X, Y ) → tree(Y ) ( tree(X)
X ∈ n & Y ∈ tree(X) & X ∈ tree(Y ) → X = Y
a 6= ∅ & (∀x ∈ n)(∃ y)

(
R(x, y)

)
→ Infinite(n)

-- here the following notion of Infinite is being referred to:
-- Infinite(I) =Def(∃c)

(
(∃k ∈ c)(k ⊆ I) & (∀k ∈ c)(∃h ∈ c)(h ( k)

)
,

-- and a clue on how to get a witness c of the infiniteness of n is:
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-- pick c =Def{tree(X) : X ∈ n}
END subTree

[· · ·TO BE COMPLETED· · · ]

2.3 Strong induction

THEORY strongInduction(n, r, a, tree, p)
IndClosed(n, r, a)
X ∈ n → IndClosed(tree(X), r, {X})
Y ∈ n & (∀x ∈ n)

(
Y ∈ tree(x) \ {x} → p(x)

)
→ p(Y )

==>
X ∈ n → p(X)
-- Hint: Assuming the contrary, we could fix (exploiting subTree)
-- an m in n s.t. ¬ p(m) & (∀u ∈ n)

(
m ∈ tree(u) \ {u} → p(u)

)
END strongInduction

2.4 Uniqueness of natural numbers

Let us now momentarily restrict our study to the special case when the seeds
(whose set is passed as third parameter to the THEORYes weakInduction, ind-
Closure, and subTree seen above) form a singleton set a = { e }, and moreover the
generating map (which is passed as second parameter to the said THEORYes)
is single-valued.

To ease the subsequent discussion, we introduce notions which combine
single-valuedness with the notions Maps, Exhs, and Disj (into-ness, surjectiv-
ity, and injectivity) introduced earlier. Along with them, we introduce the new
notion of bijectivity, which like the others refers to a global function G instead
of to a more generic global dyadic relation. Moreover, we supply a restricted
notion of inductively closed set:

Sends(G, S, T ) ↔Def (∀x ∈ S)
(
G(x) ∈ T

)
,

Surj(G, T, S) ↔Def (∀y ∈ T )(∃x ∈ S)
(
G(x) = y

)
,

Inj(G, S, T ) ↔Def (∀u, v ∈ S)(∀y ∈ T )
(
G(u) = y & G(v) = y → u = v

)
,

Bij(G, S, T ) ↔Def Surj(G, T, S) & Inj(G, S, T ),
SuccClosed(N,G,A) ↔Def A ⊆ N & Sends(G, N,N \A) & Inj(G, N,N)

& (∀t)
(
A ⊆ t & Sends(G, t, t) → N ⊆ t

)
.

As one should expect, the following THEORY, where segments take the
place of trees, easily ensues from subTree:

THEORY subSegm(n, succ, e, segm)
n = segm(e)
SngVal(succ)
e ∈ n
X ∈ n → IndClosed(segm(X), succ, {X})

==>
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X ∈ n & succ(X, Y ) → segm(Y ) = segm(X) \ {X}
-- i.e., U ∈ n & succ(U, V ) & W ∈ segm(U) \ {U} → W ∈ segm(V )
T 6= ∅ & T ⊆ n → (∃m ∈ T )(∀u ∈ T )

(
u ∈ segm(m)

)
X, Y ∈ n → X ∈ segm(Y ) ∨ Y ∈ segm(X)
U, V,W ∈ n & V ∈ segm(U) & W ∈ segm(V ) → W ∈ segm(U)
(∀x ∈ n)(∃ y)

(
R(x, y)

)
→ Infinite(n)

END subSegm

It should be clear that such n, e, and g are meant to represent the natural
numbers, their first element, and their successor function, respectively. The fact
that this representation is essentially unique should emerge from a theory with
the following traits:

THEORY uniqNat(n, g, e, nn, gg, ee)
SuccClosed(n, g, { e })
SuccClosed(nn, gg, { ee })

==> (p, q)
p(e) = ee
q(ee) = e
X ∈ n → p

(
f(X)

)
= ff

(
p(X)

)
Y ∈ nn → q

(
ff(Y )

)
= f

(
q(Y )

)
Bij(p, n, nn)
Bij(q, nn, n)
X ∈ n → q

(
p(X)

)
= X

Y ∈ nn → p
(
q(Y )

)
= Y

END uniqNat

2.5 Free closure relative to given constructors

[· · ·TO BE COMPLETED· · · ]
Inductive sets can also be generated by a set ff of constructors:

THEORY freeClosure(s,ff, a)
a ⊆ s
F ∈ ff → Maps(F, s, s \ a)
F ∈ ff → Disj(F, s)
F,G ∈ ff & F 6= G & F (U, Y ) → ¬G(V, Y )
-- Accordingly, Maps(

⋃
ff, s, s \ a) & Disj(

⋃
ff, s)

==> (n, tree)
IndClosed(n,

⋃
ff, a)

X ∈ n → IndClosed(tree(X),
⋃

ff, {X})
END freeClosure

However, the constructors have, in many applications, a degree (or “arity”)
which should be taken into account. We will see below how to deal with this
complication.

[· · ·TO BE COMPLETED· · · ]
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