A quick introduction to formative processes

Eugenio G. Omodeo

February 2002

Definition 1 A well-ordered family Π, \prec of sets is called a SUPERPARTITION if the following conditions hold:

- $(\forall \Sigma \in \Pi) (\forall \sigma \in \Sigma) (\sigma \neq \emptyset);$
- $(\forall \Sigma_0, \Sigma_1 \in \Pi) (\forall \sigma \in \Sigma_0) (\forall \tau_1, \tau_2 \in \Sigma_1) (\sigma \ni \in \tau_1 \& \sigma \ni \in \tau_2 \to \tau_1 = \tau_2),$ viz., distinct elements of a set in Π cannot intersect the same element of a set in Π ;
- \prec is endowed of a maximum in Π ;
- for all $\Lambda \in \Pi$ which does not have immediate predecessor in Π ,

$$\Lambda = \left\{ \bigcup \{ q : \Gamma \prec \Lambda, \ q \in \Gamma \mid q \ni \in p \} : \Gamma \prec \Lambda, \ p \in \Gamma \right\} \,.$$

A superpartition whose maximum element is a finite set, and in which every Σ endowed with immediate predecessor Γ satisfies, for some $\Delta \subseteq \Gamma$, the inclusions

$$\bigcup \Gamma \subseteq \bigcup \Sigma \subseteq \mathcal{P}^*(\Delta) \cup \bigcup \Gamma$$

is called a (FORMATIVE) PROCESS.

It turns out readily that every element Σ of a superpartition is a partition; moreover, the maximum in a formative process is a transitive partition. Since any well-ordered set is order-isomorphic to a unique ordinal number ξ , < (where $\langle =_{\text{Def}} \in \rangle$), we can uniquely represent any superpartition Π , \prec in the form of a $(\xi + 1)$ -sequence $(\Sigma_{\mu})_{\mu \leq \xi}$ of partitions. Then, for all $\sigma \in \bigcup \Pi$, $\Gamma \in \bigcup \mathcal{P}[\Pi]$, and $\mu \leq \xi$ we can unambiguously put

$$\begin{aligned} \sigma^{(\mu)} &=_{\mathrm{Def}} & \text{the } \tau \in \Sigma_{\mu} \text{ for which } \sigma \ni \in \tau \text{ if any exists, else } \emptyset; \\ \Gamma^{(\mu)} &=_{\mathrm{Def}} & \{\gamma^{(\mu)} : \gamma \in \Gamma\}; \\ \sigma^{(\bullet)} &=_{\mathrm{Def}} & \sigma^{(\xi)}, \quad \Gamma^{(\bullet)} &=_{\mathrm{Def}} & \Gamma^{(\xi)}. \end{aligned}$$

(Thus, for example, $\Sigma_{\xi} = \{\sigma^{(\xi)} : \sigma \in \bigcup \Pi\} = \{\sigma^{(\bullet)} : \sigma \in \bigcup \Pi\}$ in a formative process.)

Notice that the function $\sigma \mapsto \sigma^{(\mu)}$ is *injective* when restricted to the set $\{\sigma \in \Sigma_{\nu} \mid \sigma^{(\mu)} \neq \emptyset\}$, for all $\mu, \nu \leq \xi$. In the case of a formative process, it turns out easily that Σ_{ξ} is a transitive partition; accordingly, the function $\{\sigma^{(\bullet)}\}_{\sigma \in \Sigma_{\nu}}$ will be injective for all $\nu \in \xi$ (and also, obviously, for $\nu = \xi$, in which case $\sigma \stackrel{\iota_{\Sigma_{\xi}}}{\mapsto} \sigma^{(\bullet)}$).

Quite often, in the case of a formative process we will indicate by (•) a bijection $q \mapsto q^{(\bullet)}$ from the places \mathcal{P} of a colored board to Σ_{ξ} , and will also indicate by $q^{(\mu)}$ the block $(q^{(\bullet)})^{(\mu)}$ of Σ_{μ} , for all $q \in \mathcal{P}$ and $\mu \leq \xi$.

1